This copy of the TypeScript handbook was
created on Monday, March 15, 2021 against
commit 44c345 with TypeScript 4.2.

https://github.com/microsoft/TypeScript-Website/tree/44c345
https://www.typescriptlang.org//docs/handbook/release-notes/typescript-4-2.html

Table of Contents

The TypeScript Handbook
The Basics

Narrowing

More on Functions

Object Types

Generics
Keyof Type Operator

Typeof Type Operator

Indexed Access Types
Conditional Types

Template Literal Types

Classes

Modules

Your first step to learn TypeScript
Step one in learning TypeScript: The basic types.
The language primitives.

Understand how TypeScript uses JavaScript knowledge
to reduce the amount of type syntax in your projects.

Learn about how Functions work in TypeScript.

How TypeScript describes the shapes of JavaScript
objects.

An overview of the ways in which you can create more
types from existing types.

Types which take parameters

Using the keyof operator in type contexts.

Using the typeof operator in type contexts.

Using Type['a'] syntax to access a subset of a type.

Create types which act like if statements in the type
system.

Generating types by re-using an existing type.
Generating mapping types which change properties via
template literal strings.

How classes work in TypeScript

How JavaScript handles communicating across file
boundaries.

The TypeScript Handbook

About this Handbook

Over 20 years after its introduction to the programming community, JavaScript is now one of the
most widespread cross-platform languages ever created. Starting as a small scripting language for
adding trivial interactivity to webpages, JavaScript has grown to be a language of choice for both
frontend and backend applications of every size. While the size, scope, and complexity of programs
written in JavaScript has grown exponentially, the ability of the JavaScript language to express the
relationships between different units of code has not. Combined with JavaScript's rather peculiar
runtime semantics, this mismatch between language and program complexity has made JavaScript
development a difficult task to manage at scale.

The most common kinds of errors that programmers write can be described as type errors: a
certain kind of value was used where a different kind of value was expected. This could be due to
simple typos, a failure to understand the API surface of a library, incorrect assumptions about
runtime behavior, or other errors. The goal of TypeScript is to be a static typechecker for JavaScript
programs - in other words, a tool that runs before your code runs (static) and ensures that the types
of the program are correct (typechecked).

If you are coming to TypeScript without a JavaScript background, with the intention of TypeScript
being your first language, we recommend you first start reading the documentation on JavaScript
at the Mozilla Web Docs. If you have experience in other languages, you should be able to pick up
JavaScript syntax quite quickly by reading the handbook.

How is this Handbook Structured

The handbook is split into two sections:
e The Handbook

The TypeScript Handbook is intended to be a comprehensive document that explains TypeScript
to everyday programmers. You can read the handbook by going from top to bottom in the left-
hand navigation.

You should expect each chapter or page to provide you with a strong understanding of the given
concepts. The TypeScript Handbook is not a complete language specification, but it is intended to
be a comprehensive guide to all of the language's features and behaviors.

A reader who completes the walkthrough should be able to:

https://developer.mozilla.org/docs/Web/JavaScript/Guide

o Read and understand commonly-used TypeScript syntax and patterns
o Explain the effects of important compiler options

o Correctly predict type system behavior in most cases

In the interests of clarity and brevity, the main content of the Handbook will not explore every
edge case or minutiae of the features being covered. You can find more details on particular
concepts in the reference articles.

e Reference Files

The reference section below the handbook in the navigation is built to provide a richer
understanding of how a particular part of TypeScript works. You can read it top-to-bottom, but
each section aims to provide a deeper explanation of a single concept - meaning there is no aim
for continuity.

Non-Goals

The Handbook is also intended to be a concise document that can be comfortably read in a few
hours. Certain topics won't be covered in order to keep things short.

Specifically, the Handbook does not fully introduce core JavaScript basics like functions, classes, and
closures. Where appropriate, we'll include links to background reading that you can use to read up
on those concepts.

The Handbook also isn't intended to be a replacement for a language specification. In some cases,
edge cases or formal descriptions of behavior will be skipped in favor of high-level, easier-to-
understand explanations. Instead, there are separate reference pages that more precisely and
formally describe many aspects of TypeScript's behavior. The reference pages are not intended for
readers unfamiliar with TypeScript, so they may use advanced terminology or reference topics you
haven't read about yet.

Finally, the Handbook won't cover how TypeScript interacts with other tools, except where
necessary. Topics like how to configure TypeScript with webpack, rollup, parcel, react, babel, closure,
lerna, rush, bazel, preact, vue, angular, svelte, jquery, yarn, or npm are out of scope - you can find
these resources elsewhere on the web.

Get Started

Before getting started with Basic Types, we recommend reading one of the following introductory
pages. These introductions are intended to highlight key similarities and differences between
TypeScript and your favored programming language, and clear up common misconceptions
specific to those languages.

https://www.typescriptlang.org/docs/handbook/2/basic-types.html

e TypeScript for New Programmers

e TypeScript for JavaScript Programmers

e TypeScript for OOP Programmers

e TypeScript for Functional Programmers

Otherwise, jump to Basic Types or grab a copy in Epub or PDF form.

https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes-oop.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes-func.html
https://www.typescriptlang.org/docs/handbook/2/basic-types.html
https://www.typescriptlang.org/assets/typescript-handbook.epub
https://www.typescriptlang.org/assets/typescript-handbook.pdf

The Basics

Each and every value in JavaScript has a set of behaviors you can observe from running different
operations. That sounds abstract, but as a quick example, consider some operations we might run
on a variable named message .

// Accessing the property 'toLowerCase'
// on 'message' and then calling it
message.toLowerCase();

// Calling 'message'
message();

If we break this down, the first runnable line of code accesses a property called toLowerCase
and then calls it. The second one tries to call message directly.

But assuming we don't know the value of message - and that's pretty common - we can't reliably
say what results we'll get from trying to run any of this code. The behavior of each operation
depends entirely on what value we had in the first place.

e |s message callable?
e Does it have a property called toLowerCase on it?
e [fitdoes,is toLowerCase even callable?

¢ |f both of these values are callable, what do they return?

The answers to these questions are usually things we keep in our heads when we write JavaScript,
and we have to hope we got all the details right.

Let's say message was defined in the following way.

const message = "Hello World!";

As you can probably guess, if we try to run message.toLowerCase(), we'll get the same string
only in lower-case.

What about that second line of code? If you're familiar with JavaScript, you'll know this fails with an
exception:

TypeError: message is not a function

It'd be great if we could avoid mistakes like this.

When we run our code, the way that our JavaScript runtime chooses what to do is by figuring out
the type of the value - what sorts of behaviors and capabilities it has. That's part of what that
TypeError isalluding to - it's saying that the string "Hello World" cannot be called as a
function.

For some values, such as the primitives string and number , we can identify their type at
runtime using the typeof operator. But for other things like functions, there's no corresponding
runtime mechanism to identify their types. For example, consider this function:

function fn(x) {
return x.flip();

3

We can observe by reading the code that this function will only work if given an object with a
callable f1lip property, but JavaScript doesn't surface this information in a way that we can check

while the code is running. The only way in pure JavaScript to tell what fn does with a particular

value is to call it and see what happens. This kind of behavior makes it hard to predict what code
will do before it runs, which means it's harder to know what your code is going to do while you're
writing it.

Seen in this way, a typeis the concept of describing which values can be passed to fn and which
will crash. JavaScript only truly provides dynamictyping - running the code to see what happens.

The alternative is to use a static type system to make predictions about what code is expected
before it runs.

Static type-checking

Think back to that TypeError we got earlier from trying to calla string as a function. Most

people don't like to get any sorts of errors when running their code - those are considered bugs!
And when we write new code, we try our best to avoid introducing new bugs.

If we add just a bit of code, save our file, re-run the code, and immediately see the error, we might
be able to isolate the problem quickly; but that's not always the case. We might not have tested the
feature thoroughly enough, so we might never actually run into a potential error that would be
thrown! Or if we were lucky enough to witness the error, we might have ended up doing large
refactorings and adding a lot of different code that we're forced to dig through.

Ideally, we could have a tool that helps us find these bugs before our code runs. That's what a static
type-checker like TypeScript does. Static types systems describe the shapes and behaviors of what
our values will be when we run our programs. A type-checker like TypeScript uses that information
and tells us when things might be going off the rails.

const message = "hello!";

m

=();

This expression is not callable.
Type 'String' has no call signatures.

Running that last sample with TypeScript will give us an error message before we run the code in
the first place.

Non-exception Failures

So far we've been discussing certain things like runtime errors - cases where the JavaScript runtime
tells us that it thinks something is nonsensical. Those cases come up because the ECMAScript
specification has explicit instructions on how the language should behave when it runs into
something unexpected.

For example, the specification says that trying to call something that isn't callable should throw an
error. Maybe that sounds like "obvious behavior", but you could imagine that accessing a property
that doesn't exist on an object should throw an error too. Instead, JavaScript gives us different
behavior and returns the value undefined:

const user = {
name: '"Daniel",
age: 26,

3

user.location; // returns undefined

https://tc39.github.io/ecma262/

Ultimately, a static type system has to make the call over what code should be flagged as an error in
its system, even if it's "valid" JavaScript that won't immediately throw an error. In TypeScript, the
following code produces an error about 1ocation not being defined:

const user = {
name: "Daniel",
age: 26,

s

user.location;

Property 'location' does not exist on type '{ name: string; age: number;

3

While sometimes that implies a trade-off in what you can express, the intent is to catch legitimate
bugs in our programs. And TypeScript catches a /ot of legitimate bugs.

For example: typos,

const announcement = "Hello wWorld!";

// How quickly can you spot the typos?
announcement.tolLocalelLowercase();
announcement.toLocallLowerCase();

// We probably meant to write this...
announcement.tolLocaleLowerCase();

uncalled functions,

function flipCoin() {
// Meant to be Math.random()
return Math.random < 0.5;

Operator '<' cannot be applied to types '() => number' and 'number'.

3

or basic logic errors.

const value = Math.random() < 0.5 ? "a" : "b";

if (value !'== "a") {
// ..
} else if (value === "b") {

This condition will always return 'false' since the types '"a"' and '"b"'
have no overlap.

// 0ops, unreachable

}

Types for Tooling

TypeScript can catch bugs when we make mistakes in our code. That's great, but TypeScript can
also prevent us from making those mistakes in the first place.

The type-checker has information to check things like whether we're accessing the right properties
on variables and other properties. Once it has that information, it can also start suggesting which
properties you might want to use.

That means TypeScript can be leveraged for editing code too, and the core type-checker can
provide error messages and code completion as you type in the editor. That's part of what people
often refer to when they talk about tooling in TypeScript.

import express from "express";
const app = express();

app.get("/", function (req, res) {

res.sen|
send
1) sendDate
. —— e
app.liste
sendFile
sendStatus

TypeScript takes tooling seriously, and that goes beyond completions and errors as you type. An
editor that supports TypeScript can deliver "quick fixes" to automatically fix errors, refactorings to
easily re-organize code, and useful navigation features for jumping to definitions of a variable, or
finding all references to a given variable. All of this is built on top of the type-checker and is fully
cross-platform, so it's likely that your favorite editor has TypeScript support available.

https://github.com/Microsoft/TypeScript/wiki/TypeScript-Editor-Support

tsc, the TypeScript compiler

We've been talking about type-checking, but we haven't yet used our type-checker. Let's get
acquainted with our new friend tsc, the TypeScript compiler. First we'll need to grab it via npm.

npm install -g typescript

This installs the TypeScript Compiler tsc globally. You can use npx or similar tools if you'd prefer to

run tsc from a local node_modules package instead.

Now let's move to an empty folder and try writing our first TypeScript program: hello.ts:

// Greets the world.
console.log("Hello world!");

Notice there are no frills here; this "hello world" program looks identical to what you'd write for a
"hello world" program in JavaScript. And now let's type-check it by running the command tsc

which was installed for us by the typescript package.

tsc hello.ts

Tada!

Wait, "tada" what exactly? We ran tsc and nothing happened! Well, there were no type errors, so
we didn't get any output in our console since there was nothing to report.

But check again - we got some file output instead. If we look in our current directory, we'll see a
hello.js filenextto hello. ts.That's the output from our hello.ts file after tsc
compiles or transforms it into a plain JavaScript file. And if we check the contents, we'll see what
TypeScript spits out after it processes a . ts file:

// Greets the world.
console.log("Hello world!");

In this case, there was very little for TypeScript to transform, so it looks identical to what we wrote.
The compiler tries to emit clean readable code that looks like something a person would write.
While that's not always so easy, TypeScript indents consistently, is mindful of when our code spans
across different lines of code, and tries to keep comments around.

What about if we dlid introduce a type-checking error? Let's rewrite hello.ts:

// This 1is an industrial-grade general-purpose greeter function:
function greet(person, date) {
console.log(Hello ${person}, today is ${date}!);

}

greet("Brendan");

If werun tsc hello.ts again, notice that we get an error on the command line!

Expected 2 arguments, but got 1.

TypeScript is telling us we forgot to pass an argument to the greet function, and rightfully so. So
far we've only written standard JavaScript, and yet type-checking was still able to find problems
with our code. Thanks TypeScript!

Emitting with Errors

One thing you might not have noticed from the last example was that our hello. js file changed
again. If we open that file up then we'll see that the contents still basically look the same as our
input file. That might be a bit surprising given the fact that tsc reported an error about our code,
but this is based on one of TypeScript's core values: much of the time, you will know better than
TypeScript.

To reiterate from earlier, type-checking code limits the sorts of programs you can run, and so there's
a tradeoff on what sorts of things a type-checker finds acceptable. Most of the time that's okay, but
there are scenarios where those checks get in the way. For example, imagine yourself migrating
JavaScript code over to TypeScript and introducing type-checking errors. Eventually you'll get
around to cleaning things up for the type-checker, but that original JavaScript code was already
working! Why should converting it over to TypeScript stop you from running it?

So TypeScript doesn't get in your way. Of course, over time, you may want to be a bit more
defensive against mistakes, and make TypeScript act a bit more strictly. In that case, you can use the

- -nOEmMitOnError compiler option. Try changing your hello. ts file and running tsc with
that flag:

tsc --noEmitOnError hello.ts

You'll notice that hello. js never gets updated.

Explicit Types

Up until now, we haven't told TypeScript what person or date are. Let's edit the code to tell
TypeScript that person isa string, and that date should be a Date object. We'll also use
the toDateString() method on date.

function greet(person: string, date: Date) {
console.log(Hello ${person}, today is ${date.toDateString()}!);

3

What we did was add type annotations on person and date to describe what types of values
greet can be called with. You can read that signature as " greet takes a person of type
string,anda date of type Date "

With this, TypeScript can tell us about other cases where we might have been called incorrectly. For

example...

function greet(person: string, date: Date) {
console.log(Hello ${person}, today is ${date.toDateString()}!);

}

greet("Maddison", Date());

Argument of type 'string' is not assignable to parameter of type 'Date'.

Huh? TypeScript reported an error on our second argument, but why?

Perhaps surprisingly, calling Date() inJavaScriptreturnsa string.On the other hand,
constructing a Date with new Date() actually gives us what we were expecting.

Anyway, we can quickly fix up the error:

(person: , date:) {
console. (person date. ());

greet("Maddison", new Date());

Keep in mind, we don't always have to write explicit type annotations. In many cases, TypeScript can
even just infer (or "figure out") the types for us even if we omit them.

let msg = "hello there!";
// N = let msg: string

Even though we didn't tell TypeScript that msg had the type string it was able to figure that
out. That's a feature, and it's best not to add annotations when the type system would end up
inferring the same type anyway.

Note: when you see

code comment colored like this

it means that we're highlighting what your editor would show you inline. You can get the same experience
in the web browser by hovering your mouse over blue-tinted code samples.

Erased Types

Let's take a look at what happens when we compile the above function greet with tsc to
output JavaScript:

"use strict";
function greet(person, date) {
console.log("Hello " + person + ", today is " + date.toDateString() +

}

greet("Maddison", new Date());

Notice two things here:

1.Our person and date parameters no longer have type annotations.
2. Our "template string" - that string that used backticks (the ~ character) - was converted to
plain strings with concatenations (+).

More on that second point later, but let's now focus on that first point. Type annotations aren't part
of JavaScript (or ECMAScript to be pedantic), so there really aren't any browsers or other runtimes
that can just run TypeScript unmodified. That's why TypeScript needs a compiler in the first place -
it needs some way to strip out or transform any TypeScript-specific code so that you can run it.
Most TypeScript-specific code gets erased away, and likewise, here our type annotations were
completely erased.

Remember: Type annotations never change the runtime behavior of your program.

Downleveling

One other difference from the above was that our template string was rewritten from

"Hello ${person}, today is ${date.toDateString()}!";

to

"Hello " + person + ", today is " + date.toDateString() + "!";

Why did this happen?

Template strings are a feature from a version of ECMAScript called ECMAScript 2015 (a.k.a.
ECMAScript 6, ES2015, ES6, etc. - don't ask). TypeScript has the ability to rewrite code from newer
versions of ECMAScript to older ones such as ECMAScript 3 or ECMAScript 5 (a.k.a. ES3 and ES5).

This process of moving from a newer or "higher" version of ECMAScript down to an older or
"lower" one is sometimes called downleveling.

By default TypeScript targets ES3, an extremely old version of ECMAScript. We could have chosen
something a little bit more recent by using the --target flag. Running with --target

es2015 changes TypeScript to target ECMAScript 2015, meaning code should be able to run
wherever ECMAScript 2015 is supported. So running tsc --target es2015 input.ts gives
us the following output:

function greet(person, date) {
console.log(Hello ${person}, today is ${date.toDateString()}!);

¥

greet("Maddison", new Date());

While the default target is ES3, the great majority of current browsers support ES2015. Most developers
can therefore safely specify ES2015 or above as a target, unless compatibility with certain ancient

browsers is important.

Strictness

Different users come to TypeScript looking for different things in a type-checker. Some people are
looking for a more loose opt-in experience which can help validate only some parts of their
program, and still have decent tooling. This is the default experience with TypeScript, where types
are optional, inference takes the most lenient types, and there's no checking for potentially

null /undefined values. Much like how tsc emits in the face of errors, these defaults are put
in place to stay out of your way. If you're migrating existing JavaScript, that might be a desirable
first step.

In contrast, a lot of users prefer to have TypeScript validate as much as it can straight away, and
that's why the language provides strictness settings as well. These strictness settings turn static
type-checking from a switch (either your code is checked or not) into something closer to a dial. The
farther you turn this dial up, the more TypeScript will check for you. This can require a little extra
work, but generally speaking it pays for itself in the long run, and enables more thorough checks
and more accurate tooling. When possible, a new codebase should always turn these strictness
checks on.

TypeScript has several type-checking strictness flags that can be turned on or off and all of our
examples will be written with all of them enabled unless otherwise stated. The --strict flagin

the CLI,or "strict": true inatsconfig.json toggles them all on simultaneously, but we

https://www.typescriptlang.org/docs/handbook/tsconfig-json.html

can opt out of them individually. The two biggest ones you should know about are
noImplicitAny and strictNullChecks.

noImplicitAny

Recall that in some places, TypeScript doesn't try to infer any types for us and instead falls back to
the most lenient type: any . This isn't the worst thing that can happen - after all, falling back to

any is just the plain JavaScript experience anyway.

However, using any often defeats the purpose of using TypeScript in the first place. The more

typed your program is, the more validation and tooling you'll get, meaning you'll run into fewer
bugs as you code. Turning on the noImplicitAny flag will issue an error on any variables whose

type is implicitly inferred as any .

strictNullChecks

By default, values like null and undefined are assignable to any other type. This can make
writing some code easier, but forgetting to handle null and undefined is the cause of
countless bugs in the world - some consider it a billion dollar mistake! The strictNullChecks
flag makes handling null and undefined more explicit, and spares us from worrying about
whether we forgotto handle null and undefined.

https://www.youtube.com/watch?v=ybrQvs4x0Ps

Everyday Types

In this chapter, we'll cover some of the most common types of values you'll find in JavaScript code,
and explain the corresponding ways to describe those types in TypeScript. This isn't an exhaustive
list, and future chapters will describe more ways to name and use other types.

Types can also appear in many more places than just type annotations. As we learn about the types
themselves, we'll also learn about the places where we can refer to these types to form new
constructs.

We'll start by reviewing the most basic and common types you might encounter when writing
JavaScript or TypeScript code. These will later form the core building blocks of more complex types.

The primitives: string, number, and boolean

JavaScript has three very commonly used primitives: string, number ,hand boolean . Each has

a corresponding type in TypeScript. As you might expect, these are the same names you'd see if you
used the JavaScript typeof operator on a value of those types:

e string represents string values like "Hello, world"

e number is for numbers like 42 .JavaScript does not have a special runtime value for integers,
so there's no equivalentto int or float - everythingis simply number

e boolean is for the two values true and false

The type names String, Number , and Boolean (starting with capital letters) are legal, but refer to
some special built-in types that will very rarely appear in your code. Always use string, number , or

boolean for types.

Arrays

To specify the type of an array like [1, 2, 3],you can use the syntax number [] ; this syntax
works for any type (e.g. string[] is an array of strings, and so on). You may also see this written
as Array<number>, which means the same thing. We'll learn more about the syntax T<U>
when we cover generics.

Note that [number] is a different thing; refer to the section on tuple types.

https://developer.mozilla.org/en-US/docs/Glossary/Primitive

any

TypeScript also has a special type, any , that you can use whenever you don't want a particular
value to cause typechecking errors.

When a value is of type any , you can access any properties of it (which will in turn be of type
any), call it like a function, assign it to (or from) a value of any type, or pretty much anything else
that's syntactically legal:

let obj: any = { x: 0 };

// None of these lines of code are errors
obj.foo();

0bj();

obj.bar = 100;

obj = "hello";

const n: number = obj;

The any type is useful when you don't want to write out a long type just to convince TypeScript
that a particular line of code is okay.
noImplicitAny

When you don't specify a type, and Typescript can't infer it from context, the compiler will typically
default to any.

You usually want to avoid this, though, because any isn't type-checked. Use the compiler flag
noImplicitAny to flag any implicit any as an error.

Type Annotations on Variables

When you declare a variable using const, var,or let, you can optionally add a type
annotation to explicitly specify the type of the variable:

let myName: string = "Alice";

TypeScript doesn't use "types on the left"-style declarations like int x = ©; Type annotations will

always go after the thing being typed.

https://www.typescriptlang.org/tsconfig#noImplicitAny

In most cases, though, this isn't needed. Wherever possible, TypeScript tries to automatically infer
the types in your code. For example, the type of a variable is inferred based on the type of its
initializer:

// No type annotation needed -- 'myName' inferred as type 'string'
let myName = "Alice";

For the most part you don't need to explicitly learn the rules of inference. If you're starting out, try
using fewer type annotations than you think - you might be surprised how few you need for
TypeScript to fully understand what's going on.

Functions

Functions are the primary means of passing data around in JavaScript. TypeScript allows you to
specify the types of both the input and output values of functions.

Parameter Type Annotations

When you declare a function, you can add type annotations after each parameter to declare what
types of parameters the function accepts. Parameter type annotations go after the parameter name:

// Parameter type annotation
function greet(name: string) {
console.log("Hello, " + name.toUpperCase() + "!I");

}

When a parameter has a type annotations, arguments to that function will be checked:

// Would be a runtime error if executed!
greet(42);

Argument of type 'number' is not assignable to parameter of type 'string'.

Even if you don't have type annotations on your parameters, TypeScript will still check that you passed the

right number of arguments.

Return Type Annotations

You can also add return type annotations. Return type annotations appear after the parameter list:

function getFavoriteNumber(): number {
return 26;

Much like variable type annotations, you usually don't need a return type annotation because
TypeScript will infer the function's return type based on its return statements. The type
annotation in the above example doesn't change anything. Some codebases will explicitly specify a
return type for documentation purposes, to prevent accidental changes, or just for personal
preference.

Anonymous Functions

Anonymous functions are a little bit different from function declarations. When a function appears
in a place where TypeScript can determine how it's going to be called, the parameters of that
function are automatically given types.

Here's an example:

// No type annotations here, but TypeScript can spot the bug
const names = ["Alice", "Bob", "Eve"];

// Contextual typing for function
names.forEach(function (s) {

Property 'toUppercase' does not exist on type 'string'. Did you mean
'toUpperCase'?

1)

// Contextual typing also applies to arrow functions
names.forEach((s) => {

Property 'toUppercase' does not exist on type 'string'. Did you mean
'"toUpperCase'?

)

Even though the parameter s didn't have a type annotation, TypeScript used the types of the
forEach function, along with the inferred type of the array, to determine the type s will have.

This process is called contextual typing because the context that the function occurred in informed
what type it should have. Similar to the inference rules, you don't need to explicitly learn how this

happens, but understanding that it does happen can help you notice when type annotations aren't
needed. Later, we'll see more examples of how the context that a value occurs in can affect its type.

Object Types

Apart from primitives, the most common sort of type you'll encounter is an object type. This refers
to any JavaScript value with properties, which is almost all of them! To define an object type, we
simply list its properties and their types.

For example, here's a function that takes a point-like object:

// The parameter's type annotation is an object type

function printCoord(pt: { x: number; y: number }) {
console.log("The coordinate's x value is " + pt.x);
console.log("The coordinate's y value is " + pt.y);

}
printCoord({ x: 3, y: 7 });

Here, we annotated the parameter with a type with two properties - x and y - which are both of
type number .You canuse , or ; to separate the properties, and the last separator is optional
either way.

The type part of each property is also optional. If you don't specify a type, it will be assumed to be
any .

Optional Properties

Object types can also specify that some or all of their properties are optional. To do this, add a ?
after the property name:

function printName(obj: { first: string; last?: string }) {
//

b
// Both OK

printName({ first: "Bob" });
printName({ first: "Alice", last: "Alisson" });

In JavaScript, if you access a property that doesn't exist, you'll get the value undefined rather
than a runtime error. Because of this, when you read from an optional property, you'll have to check
for undefined before usingit.

function printName(obj: { first: string; last?: string }) {
// Error - might crash if 'obj.last' wasn't provided!
console.log(obj.last.toUpperCase());

Object is possibly 'undefined'.

if (obj.last !== undefined) {
// OK
console.log(obj.last.toUpperCase());
¥

// A safe alternative using modern JavaScript syntax:
console.log(obj.last?.toUpperCase());

}

Union Types

TypeScript's type system allows you to build new types out of existing ones using a large variety of
operators. Now that we know how to write a few types, it's time to start combining them in
interesting ways.

Defining a Union Type

The first way to combine types you might see is a union type. A union type is type formed from two
or more other types, representing values that may be any one of those types. We refer to each of
these types as the union's members.

Let's write a function that can operate on strings or numbers:

function printId(id: number | string) {

console.log("Your ID is: " + id);
}
// OK
printId(101);
// OK
printId("202");
// Error

printId({ myID: 22342 });

Argument of type '{ myID: number; }' is not assignable to parameter of
type 'string | number'.
Type '{ myID: number; }' is not assignable to type 'number'.

Working with Union Types

It's easy to provide a value matching a union type - simply provide a type matching any of the
union's members. If you have a value of a union type, how do you work with it?

TypeScript will only allow you to do things with the union if that thing is valid for every member of
the union. For example, if you have the union string | number , you can't use methods that are
only available on string:

function printId(id: number | string) {
console.log(id.Egggggﬂgggg());

Property 'toUpperCase' does not exist on type 'string | number'.
Property 'toUpperCase' does not exist on type 'number'.

The solution is to narrow the union with code, the same as you would in JavaScript without type
annotations. Narrowing occurs when TypeScript can deduce a more specific type for a value based
on the structure of the code

For example, TypeScript knows that only a string value will have a typeof value "string":

function printId(id: number | string) {
if (typeof id === "string") {
// In this branch, id is of type 'string'
console.log(id.toUpperCase());
} else {
// Here, id is of type 'number'
console.log(id);

b
¥

Another example is to use a function like Array.isArray :

function welcomePeople(x: string[] | string) {
if (Array.isArray(x)) {
// Here: 'x' is 'string[]'
console.log("Hello, " + x.join(" and "));
} else {
// Here: 'x' is 'string'
console.log("wWelcome lone traveler " + x);

}

Notice that in the else branch, we don't need to do anything special - if X wasn'ta string[],
then it must have been a string.

Sometimes you'll have a union where all the members have something in common. For example,
both arrays and strings have a slice method. If every member in a union has a property in

common, you can use that property without narrowing:

// Return type is inferred as number[] | string
function getFirstThree(x: number[] | string) {
return x.slice(0, 3);

It might be confusing that a union of types appears to have the intersection of those types' properties. This

is not an accident - the name union comes from type theory. The union number | string is composed

by taking the union of the values from each type. Notice that given two sets with corresponding facts

about each set, only the intersection of those facts applies to the union of the sets themselves. For
example, if we had a room of tall people wearing hats, and another room of Spanish speakers wearings
hats, after combining those rooms, the only thing we know about every person is that they must be

wearing a hat.

Type Aliases

We've been using object types and union types by writing them directly in type annotations. This is
convenient, but it's common to want to use the same type more than once and refer to it by a single
name.

A type alias is exactly that - a name for any type. The syntax for a type alias is:

type Point = {
X: number;
y: number;

}

// Exactly the same as the earlier example

function printCoord(pt: Point) {
console.log("The coordinate's x value is " + pt.x);
console.log("The coordinate's y value is " + pt.y);

}

printCoord({ x: 100, y: 100 });

You can actually use a type alias to give a name to any type at all, not just an object type. For
example, a type alias can name a union type:

type ID = number | string;

Note that aliases are only aliases - you cannot use type aliases to create different/distinct "versions"
of the same type. When you use the alias, it's exactly as if you had written the aliased type. In other
words, this code might /ook illegal, but is OK according to TypeScript because both types are aliases
for the same type:

type UserInputSanitizedString = string;

function sanitizeInput(str: string): UserInputSanitizedString {
return sanitize(str);

}

// Create a sanitized input
let userInput = sanitizeInput(getInput());

// Can still be re-assigned with a string though
userInput = "new input";

Interfaces

An interface declaration is another way to name an object type:

interface Point {
X: number;
y: number;

}

function printCoord(pt: Point) {
console.log("The coordinate's x value is " + pt.x);
console.log("The coordinate's y value is " + pt.y);

3

printCoord({ x: 100, y: 100 });

Just like when we used a type alias above, the example works just as if we had used an anonymous
object type. TypeScript is only concerned with the structure of the value we passed to
printCoord -itonly cares that it has the expected properties. Being concerned only with the

structure and capabilities of types is why we call TypeScript a structurally typed type system.

Differences Between Type Aliases and Interfaces

Type aliases and interfaces are very similar, and in many cases you can choose between them freely.
Almost all features of an interface are available in type, the key distinction is that a type

cannot be re-opened to add new properties vs an interface which is always extendable.

Interface Type

Extending an interface Extending a type via intersections
interface Animal { type Animal = {
name: string name: string
} }
interface Bear extends Animal { type Bear = Animal & {
honey: boolean honey: Boolean
} }
const bear = getBear() const bear = getBear();
bear.name bear.name;
bear.honey bear.honey;
Adding new fields to an existing interface A type cannot be changed after being created
interface Window { type Window = {
title: string title: string
} }
interface Window { type Window = {
ts: TypeScriptAPI ts: TypeScriptAPI
} }
const src = 'const a = "Hello World"'; // Error: Duplicate identifier 'Windc

window.ts.transpileModule(src, {});

You'll learn more about these concepts in later chapters, so don't worry if you don't understand all
of these right away.

e Type alias names may appear in error messages, sometimes in place of the equivalent
anonymous type (which may or may not be desirable). Interfaces will always be named in error
messages.

https://www.typescriptlang.org/play?#code/PTAEGEHsFsAcEsA2BTATqNrLusgzngIYDm+oA7koqIYuYQJ56gCueyoAUCKAC4AWHAHaFcoSADMaQ0PCG80EwgGNkALk6c5C1EtWgAsqOi1QAb06groEbjWg8vVHOKcAvpokshy3vEgyyMr8kEbQJogAFND2YREAlOaW1soBeJAoAHSIkMTRmbbI8e6aPMiZxJmgACqCGKhY6ABGyDnkFFQ0dIzMbBwCwqIccabcYLyQoKjIEmh8kwN8DLAc5PzwwbLMyAAeK77IACYaQSEjUWZWhfYAjABMAMwALA+gbsVjoADqgjKESytQPxCHghAByXigYgBfr8LAsYj8aQMUASbDQcRSExCeCwFiIQh+AKfAYyBiQFgOPyIaikSGLQo0Zj-aazaY+dSaXjLDgAGXgAC9CKhDqAALxJaw2Ib2RzOISuDycLw+ImBYKQflCkWRRD2LXCw6JCxS1JCdJZHJ5RAFIbFJU8ADKC3WzEcnVZaGYE1ABpFnFOmsFhsil2uoHuzwArO9SmAAEIsSFrZB-GgAjjA5gtVN8VCEc1o1C4Q4AGlR2AwO1EsBQoAAbvB-gJ4HhPgB5aDwem-Ph1TCV3AEEirTp4ELtRbTPD4vwKjOfAuioSQHuDXBcnmgACC+eCONFEs73YAPGGZVT5cRyyhiHh7AAON7lsG3vBggB8XGV3l8-nVISOgghxoLq9i7io-AHsayRWGaFrlFauq2rg9qaIGQHwCBqChtKdgRo8TxRjeyB3o+7xAA

e Type aliases may not participate in declaration merging, but interfaces can.

¢ Interfaces may only be used to declare the shapes of object, not re-name primitives.

e |Interface names will a/lways appear in their original form in error messages, but only when they
are used by name.

For the most part, you can choose based on personal preference, and TypeScript will tell you if it
needs something to be the other kind of declaration. If you would like a heuristic, use interface

until you need to use features from type.

Type Assertions

Sometimes you will have information about the type of a value that TypeScript can't know about.

For example, if you're using document.getElementById, TypeScript only knows that this will
return somekind of HTMLElement , but you might know that your page will always have an
HTMLCanvasElement with a given ID.

In this situation, you can use a type assertion to specify a more specific type:

const myCanvas = document.getElementById("main_canvas") as HTMLCanvasEleme

Like a type annotation, type assertions are removed by the compiler and won't affect the runtime
behavior of your code.

You can also use the angle-bracket syntax (except if the code isina .tsx file), which is equivalent:

const myCanvas = <HTMLCanvasElement>document.getElementById("main_canvas")
Reminder: Because type assertions are removed at compile-time, there is no runtime checking associated
with a type assertion. There won't be an exception or null generated if the type assertion is wrong.

TypeScript only allows type assertions which convert to a more specific or less specific version of a
type. This rule prevents "impossible” coercions like:

https://www.typescriptlang.org/play?#code/PTAEEEDtQS0gXApgJwGYEMDGjSfdAIx2UQFoB7AB0UkQBMAoEUfO0Wgd1ADd0AbAK6IAzizp16ALgYM4SNFhwBZdAFtV-UAG8GoPaADmNAcMmhh8ZHAMMAvjLkoM2UCvWad+0ARL0A-GYWVpA29gyY5JAWLJAwGnxmbvGgALzauvpGkCZmAEQAjABMAMwALLkANBl6zABi6DB8okR4Jjg+iPSgABboovDk3jjo5pbW1d6+dGb5djLwAJ7UoABKiJTwjThpnpnGpqPBoTLMAJrkArj4kOTwYmycPOhW6AR8IrDQ8N04wmo4HHQCwYi2Waw2W1S6S8HX8gTGITsQA
https://www.typescriptlang.org/play?#code/PTAEAkFMCdIcgM6gC4HcD2pIA8CGBbABwBtIl0AzUAKBFAFcEBLAOwHMUBPQs0XFgCahWyGBVwBjMrTDJMAshOhMARpD4tQ6FQCtIE5DWoixk9QEEWAeV37kARlABvaqDegAbrmL1IALlAEZGV2agBfampkbgtrWwMAJlAAXmdXdy8ff0Dg1jZwyLoAVWZ2Lh5QVHUJflAlSFxROsY5fFAWAmk6CnRoLGwmILzQQmV8JmQmDzI-SOiKgGV+CaYAL0gBBdyy1KCQ-Pn1AFFplgA5enw1PtSWS+vCsAAVAAtB4QQWOEMKBuYVUiVCYvYQsUTQcRSBDGMGmKSgAAa-VEgiQe2GLgKQA
https://www.typescriptlang.org/play?#code/PTAEGEHsFsAcEsA2BTATqNrLusgzngIYDm+oA7koqIYuYQJ56gCueyoAUCKAC4AWHAHaFcoSADMaQ0PCG80EwgGNkALk6c5C1EtWgAsqOi1QAb06groEbjWg8vVHOKcAvpokshy3vEgyyMr8kEbQJogAFND2YREAlOaW1soBeJAoAHSIkMTRmbbI8e6aPMiZxJmgACqCGKhY6ABGyDnkFFQ0dIzMbBwCwqIccabcYLyQoKjIEmh8kwN8DLAc5PzwwbLMyAAeK77IACYaQSEjUWY2Q-YAjABMAMwALA+gbsVjNXW8yxySoAADaAA0CCaZbPh1XYqXgOIY0ZgmcK0AA0nyaLFhhGY8F4AHJmEJILCWsgZId4NNfIgGFdcIcUTVfgBlZTOWC8T7kAJ42G4eT+GS42QyRaYbCgXAEEguTzeXyCjDBSAAQSE8Ai0Xsl0K9kcziExDeiQs1lAqSE6SyOTy0AKQ2KHk4p1V6s1OuuoHuzwArMagA

const x = "hello" as number;

Conversion of type 'string' to type 'number' may be a mistake because
neither type sufficiently overlaps with the other. If this was
intentional, convert the expression to 'unknown' first.

Sometimes this rule can be too conservative and will disallow more complex coercions that might
be valid. If this happens, you can use two assertions, first to any (or unknown , which we'll
introduce later), then to the desired type:

const a = (expr as any) as T;

Literal Types

In addition to the general types string and number , we can refer to specific strings and
numbers in type positions.

One way to think about this is to consider how JavaScript comes with different ways to declare a
variable. Both var and let allow for changing what is held inside the variable, and const does
not. This is reflected in how TypeScript creates types for literals.

let changingString = "Hello World";

changingString = "Ola Mundo";

// Because “changingString can represent any possible string, that
// 1s how TypeScript describes it in the type system
changingString;

// N = let changingString: string

const constantString = "Hello World";

// Because ‘constantString can only represent 1 possible string, it
// has a literal type representation

constantString;

// N = const constantString: "Hello World"

By themselves, literal types aren't very valuable:

let x: "hello" = "hello";

// OK
x = "hello";
// ...
x = "howdy";

Type '"howdy"' is not assignable to type '"hello"'.

It's not much use to have a variable that can only have one value!

But by combining literals into unions, you can express a much more useful concept - for example,
functions that only accept a certain set of known values:

function printText(s: string, alignment: "left" | "right" | "center") {
//

}
printText("Hello, world", "left");

printText("G'day, mate", "centre");

Argument of type '"centre"' is not assignable to parameter of type '"left"
| "right" | "center"'.

Numeric literal types work the same way:

function compare(a: string, b: string): -1 | 0 | 1 {
returna==b?0:a>b?1: -1,

Of course, you can combine these with non-literal types:

interface Options {
width: number;

¥

function configure(x: Options | "auto") {
//

¥
configure({ width: 100 });

configure("auto");
configure("automatic");

Argument of type '"automatic"' is not assignable to parameter of type
'Options | "auto"'.

There's one more kind of literal type: boolean literals. There are only two boolean literal types, and
as you might guess, they are the types true and false.The type boolean itself is actually just
an alias for the union true | false.

Literal Inference

When you initialize a variable with an object, TypeScript assumes that the properties of that object
might change values later. For example, if you wrote code like this:

const obj = { counter: 0 };
if (someCondition) {
obj.counter = 1;

}

TypeScript doesn't assume the assignment of 1 to a field which previously had 0 is an error.
Another way of saying this is that obj.counter must have the type number , not 0, because
types are used to determine both reading and writing behavior.

The same applies to strings:

const req = { url: "https://example.com", method: "GET" };
handleRequest(req.url, reqg.method);

Argument of type 'string' is not assignable to parameter of type '"GET" |
"POST"'.

In the above example req.method is inferred to be string, not "GET" . Because code can be
evaluated between the creation of req and the call of handleRequest which could assign a
new string like "GUESS" to req.method, TypeScript considers this code to have an error.

There are two ways to work around this.

1. You can change the inference by adding a type assertion in either location:

// Change
const req
// Change 2

handleRequest(req.url, req.method as "GET");

[N

{ url: "https://example.com", method: "GET" as "GET" };

Change 1 means "l intend for req.method to always have the literal type "GET" ",
preventing the possible assignment of "GUESS" to that field after. Change 2 means "l know
for other reasons that req.method has the value "GET" ".

2.You can use as const to convert the entire object to be type literals:

const req = { url: "https://example.com", method: "GET" } as const;
handleRequest(req.url, req.method);

The as const prefix acts like const but for the type system, ensuring that all properties are
assigned the literal type instead of a more general version like string or number .

null and undefined

JavaScript has two primitive values used to signal absent or uninitialized value: null and
undefined.

TypeScript has two corresponding types by the same names. How these types behave depends on
whether you have the strictNullChecks option on.

strictNullChecks off

With strictNullChecks off, values that might be null or undefined can still be accessed
normally, and the values null and undefined can be assigned to a property of any type. This is

similar to how languages without null checks (e.g. C#, Java) behave. The lack of checking for these
values tends to be a major source of bugs; we always recommend people turn
strictNullChecks on ifit's practical to do soin their codebase.

strictNullChecks on

With strictNullChecks on when avalueis null or undefined, you will need to test for
those values before using methods or properties on that value. Just like checking for undefined
before using an optional property, we can use narrowing to check for values that might be null:

function doSomething(x: string | undefined) {
if (x === undefined) {
// do nothing
} else {
console.log("Hello, " + x.toUpperCase());

¥
b

Non-null Assertion Operator (Postfix !)

TypeScript also has a special syntax for removing null and undefined from a type without
doing any explicit checking. Writing ! after any expression is effectively a type assertion that the
valueisn't null or undefined:

function liveDangerously(x?: number | undefined) {
// No error
console.log(x!.toFixed());

}

Just like other type assertions, this doesn't change the runtime behavior of your code, so it's
important to only use ! when you know that the value can‘tbe null or undefined.

Enums

Enums are a feature added to JavaScript by TypeScript which allows for describing a value which
could be one of a set of possible named constants. Unlike most TypeScript features, this is nota
type-level addition to JavaScript but something added to the language and runtime. Because of this,

it's a feature which you should know exists, but maybe hold off on using unless you are sure. You
can read more about enums in the Enum reference page.

Less Common Primitives

It's worth mentioning the rest of the primitives in JavaScript which are represented in the type
system. Though we will not go into depth here.

bigint

From ES2020 onwards, there is a primitive in JavaScript used for very large integers, BigInt :

// Creating a bigint via the BigInt function
const oneHundred: bigint = BigInt(100);

// Creating a BigInt via the literal syntax
const anotherHundred: bigint = 100n;

You can learn more about BigInt in the TypeScript 3.2 release notes.

symbol

There is a primitive in JavaScript used to create a globally unique reference via the function
Symbol():

const firstName = Symbol("name");
const secondName = Symbol('"name");

if (firstName === secondName) {

This condition will always return 'false' since the types 'typeof
firstName' and 'typeof secondName' have no overlap.

// Can't ever happen

}

You can learn more about them in Symbols reference page.

https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-2.html#bigint
https://www.typescriptlang.org/docs/handbook/symbols.html

Narrowing

Imagine we have a function called padLeft.

function padLeft(padding: number | string, input: string): string {
throw new Error('"Not implemented yet!");

}

If padding is a number , it will treat that as the number of spaces we want to prepend to
input.If padding isa string, itshould just prepend padding to input . Let's try to
implement the logic for when padLeft is passed a number for padding.

function padLeft(padding: number | string, input: string) {
return new Array(padding + 1).join(" ") + input;

Operator '+' cannot be applied to types 'string | number' and 'number'.

3

Uh-oh, we're getting an error on padding + 1.TypeScriptis warning us that addinga number
toa number | string might not give us what we want, and it's right. In other words, we
haven't explicitly checked if padding is a number first, nor are we handling the case where it's a

string, so let's do exactly that.

function padLeft(padding: number | string, input: string) {
if (typeof padding === "number") {
return new Array(padding + 1).join(" ") + input;
3
return padding + input;

3

If this mostly looks like uninteresting JavaScript code, that's sort of the point. Apart from the
annotations we put in place, this TypeScript code looks like JavaScript. The idea is that TypeScript's
type system aims to make it as easy as possible to write typical JavaScript code without bending

over backwards to get type safety.

While it might not look like much, there's actually a lot going under the covers here. Much like how
TypeScript analyzes runtime values using static types, it overlays type analysis on JavaScript's
runtime control flow constructs like if/else, conditional ternaries, loops, truthiness checks, etc.,
which can all affect those types.

Within our if check, TypeScript sees typeof padding === "number" and understands that
as a special form of code called a type guard. TypeScript follows possible paths of execution that
our programs can take to analyze the most specific possible type of a value at a given position. It
looks at these special checks (called type guards) and assignments, and the process of refining
types to more specific types than declared is called narrowing. In many editors we can observe
these types as they change, and we'll even do so in our examples.

function padLeft(padding: number | string, input: string) {

if (typeof padding === "number") {
return new Array(padding + 1).join(" ") + input;
// N = (parameter) padding: number
}
return padding + input;
// N = (parameter) padding: string

There are a couple of different constructs TypeScript understands for narrowing.

typeof type guards

As we've seen, JavaScript supports a typeof operator which can give very basic information

about the type of values we have at runtime. TypeScript expects this to return a certain set of
strings:

e "string"
e "number"
e "bigint"

e "pboolean"
e ''symbol"
e "undefined"

e "oObject"

e '"function"

Like we saw with padLeft, this operator comes up pretty often in a number of JavaScript
libraries, and TypeScript can understand it to narrow types in different branches.

In TypeScript, checking against the value returned by typeof is a type guard. Because TypeScript
encodes how typeof operates on different values, it knows about some of its quirks in JavaScript.
For example, notice that in the list above, typeof doesn'treturn the string null . Check out the

following example:

function printAll(strs: string | string[] | null) {
if (typeof strs === "object") {
for (const s of strs) {

Object is possibly 'null'.

console.log(s);

}

} else if (typeof strs === "string") {
console.log(strs);

} else {
// do nothing

¥
b

Inthe printAll function, we try to check if strs is an object to see if it's an array type (now

might be a good time to reinforce that arrays are object types in JavaScript). But it turns out that in
JavaScript, typeof null is actually "object" ! This is one of those unfortunate accidents of

history.

Users with enough experience might not be surprised, but not everyone has run into this in
JavaScript; luckily, TypeScript lets us know that strs was only narrowed down to string[] |

null instead of just string[].

This might be a good segue into what we'll call "truthiness" checking.

Truthiness narrowing

Truthiness might not be a word you'll find in the dictionary, but it's very much something you'll
hear about in JavaScript.

In JavaScript, we can use any expression in conditionals, &&s, || s, 1f statements, and Boolean
negations (!), and more. As an example, if statements don't expect their condition to always
have the type boolean.

function getUsersOnlineMessage(numUsersOnline: number) {
if (numUsersOnline) {
return "There are ${numUsersOnline} online now! " ;

}

return "Nobody's here. :(";

In JavaScript, constructs like if first "coerce” their conditions to boolean s to make sense of
them, and then choose their branches depending on whether the resultis true or false . Values
like

e (

e NaN

e "" (the empty string)

e 0On (the bigint version of zero)
e null

e undefined

all coerceto false, and other values get coerced true .You can always coerce values to
boolean s by running them through the Boolean function, or by using the shorter double-
Boolean negation.

// both of these result in 'true'
Boolean("hello");
I'1"world",;

It's fairly popular to leverage this behavior, especially for guarding against values like null or
undefined . As an example, let's try using it for our printAll function.

function printAll(strs: string | string[] | null) {
if (strs && typeof strs === "object") {
for (const s of strs) {
console.log(s);
}
} else if (typeof strs === "string") {
console.log(strs);
¥
}

You'll notice that we've gotten rid of the error above by checking if strs is truthy. This at least
prevents us from dreaded errors when we run our code like:

TypeError: null is not iterable

Keep in mind though that truthiness checking on primitives can often be error prone. As an
example, consider a different attempt at writing printAll

function (strs: [1 |) {
(strs) {
(typeof strs ===) {
(const of strs) {
console. (s);
}
} (typeof strs ===) {
console. (strs);
hy
3
}

We wrapped the entire body of the function in a truthy check, but this has a subtle downside: we
may no longer be handling the empty string case correctly.

TypeScript doesn't hurt us here at all, but this is behavior worth noting if you're less familiar with
JavaScript. TypeScript can often help you catch bugs early on, but if you choose to do nothing with
a value, there's only so much that it can do without being overly prescriptive. If you want, you can
make sure you handle situations like these with a linter.

One last word on narrowing by truthiness is that Boolean negations with ! filter out from negated
branches.

function multiplyAll(
values: number[] | undefined,
factor: number
): number[] | undefined {
if (!values) {
return values;
} else {
return values.map((x) => x * factor);
b
}

Equality narrowing

TypeScript also uses switch statements and equality checks like ===, ==, ==,and != to
narrow types. For example:

function example(x: string | number, y: string | boolean) {
if (x ===vy) {
// We can now call any 'string' method on 'x' or 'y'.
X.toUppercCase();

// N = (method) String.toUpperCase(): string
y.toLowerCase();
// N = (method) String.toLowerCase(): string
} else {
console.log(x);
// AN = (parameter) x: string | number

console.log(y);
// N = (parameter) y: string | boolean

When we checked that x and y are both equal in the above example, TypeScript knew their types
also had to be equal. Since string is the only common type that both x and y could take on,
TypeScript knows that x and y mustbea string in the first branch.

Checking against specific literal values (as opposed to variables) works also. In our section about
truthiness narrowing, we wrote a printAll function which was error-prone because it

accidentally didn't handle empty strings properly. Instead we could have done a specific check to
block out null s, and TypeScript still correctly removes null from the type of strs.

function printAll(strs: string | string[] | null) {

if (strs !== null) {
if (typeof strs === "object") {
for (const s of strs) {
// N = (parameter) strs: stringl[]

console.log(s);

3
} else if (typeof strs === "string") {
console.log(strs);
// AN = (parameter) strs: string
¥
¥
}
JavaScript's looser equality checks with == and != also get narrowed correctly. If you're
unfamiliar, checking whether something == null actually not only checks whether it is

specifically the value null -italso checks whether it's potentially undefined . The same applies
to == undefined :it checks whether a value is either null or undefined.

interface Container {
value: number | null | undefined;

function multiplyValue(container: Container, factor: number) {
// Remove both 'null' and 'undefined' from the type.

if (container.value !'= null) {
console.log(container.value);
// AN = (property) Container.value: number

// Now we can safely multiply 'container.value'.
container.value *= factor;

¥
b

instanceof narrowing

JavaScript has an operator for checking whether or not a value is an "instance" of another value.
More specifically, in JavaScript x instanceof Foo checks whether the prototype chain of x

contains Foo.prototype.While we won't dive deep here, and you'll see more of this when we
get into classes, they can still be useful for most values that can be constructed with new . As you
might have guessed, instanceof is also a type guard, and TypeScript narrows in branches
guarded by instanceof s.

function logValue(x: Date | string) {
if (x instanceof Date) {
console.log(x.toUTCString());

// N = (parameter) x: Date
} else {
console.log(x.toUpperCase());
// N = (parameter) x: string
b
}

Assignments

As we mentioned earlier, when we assign to any variable, TypeScript looks at the right side of the
assignment and narrows the left side appropriately.

let x = Math.random() < 0.5 ? 10 : "hello world!";
// N let x: string | number

X = 1;

console.log(x);
// A = let Xx: number
x = "goodbye!";

console.log(x)
// A

~=

let x: string

Notice that each of these assignments is valid. Even though the observed type of x changed to
number after our first assignment, we were still able to assigna string to x.This is because
the declared type of x - the type that x started with -is string | number, and assignability is
always checked against the declared type.

If we'd assigned a boolean to X, we'd have seen an error since that wasn't part of the declared

type.

let x = Math.random() < 0.5 ? 10 : "hello world!";
// N = let x: string | number
X = 1;

console.log(x);
// A = let x: number

X = true;

Type 'boolean' is not assignable to type 'string | number'.

console.log(x)
// A

~=

let x: string | number

Control flow analysis

Up until this point, we've gone through some basic examples of how TypeScript narrows within
specific branches. But there's a bit more going on than just walking up from every variable and
looking for type guards in if's, while s, conditionals, etc. For example

function padLeft(padding: number | string, input: string) {
if (typeof padding === "number") {
return new Array(padding + 1).join(" ") + input;

}

return padding + input;

}

padLeft returns from within its first if block. TypeScript was able to analyze this code and see
that the rest of the body (return padding + input;)is unreachablein the case where
padding is a number . As a result, it was able to remove number from the type of padding
(narrowing from string | number to string) for the rest of the function.

This analysis of code based on reachability is called control flow analysis, and TypeScript uses this
flow analysis to narrow types as it encounters type guards and assignments. When a variable is
analyzed, control flow can split off and re-merge over and over again, and that variable can be
observed to have a different type at each point.

function example() {
let x: string | number | boolean;

X = Math.random() < 0.5;

console.log(x);
// A = let x: boolean

if (Math.random() < 0.5) {

x = "hello",
console.log(x);
// A = let x: string
} else {
X = 100;
console.log(x);
// A = let x: number
3
return x;
// A = let x: string | number

}

Using type predicates

We've worked with existing JavaScript constructs to handle narrowing so far, however sometimes
you want more direct control over how types change throughout your code.

To define a user-defined type guard, we simply need to define a function whose return type is a type
predicate.

function isFish(pet: Fish | Bird): pet is Fish {
return (pet as Fish).swim !== undefined;

}

pet is Fish is our type predicate in this example. A predicate takes the form
parameterName is Type,where parameterName must be the name of a parameter from
the current function signature.

Any time isFish is called with some variable, TypeScript will narrow that variable to that specific
type if the original type is compatible

// Both calls to 'swim' and 'fly' are now okay.
let pet = getSmallPet();

if (isFish(pet)) {
pet.swim();

} else {
pet.fly();

}

Notice that TypeScript not only knows that pet isa Fish inthe if branch; it also knows thatin
the else branch, you don‘thave a Fish, soyou must havea Bird.

You may use the type guard isFish tofilter an array of Fish | Bird and obtain an array of
Fish:

const zoo: (Fish | Bird)[] = [getSmallPet(), getSmallPet(), getSmallPet()]
const underWaterl: Fish[] zoo.filter(isFish);

// or, equivalently

const underWater2: Fish[] zoo.filter<Fish>(isFish);

const underWater3: Fish[] = zoo.filter<Fish>((pet) => isFish(pet));

Argument of type '(pet: Fish | Bird) => boolean' is not assignable to
parameter of type '(value: Fish | Bird, index: number, array: (Fish |
Bird)[]) => value is Fish'.

Signature '(pet: Fish | Bird): boolean' must be a type predicate.

Discriminated unions

Most of the examples we've looked at so far have focused around narrowing single variables with
simple types like string, boolean, and number . While this is common, most of the time in

JavaScript we'll be dealing with slightly more complex structures.

For some motivation, let's imagine we're trying to encode shapes like circles and squares. Circles
keep track of their radii and squares keep track of their side lengths. We'll use a field called kind
to tell which shape we're dealing with. Here's a first attempt at defining Shape .

interface Shape {
kind: "circle" | "square";
radius?: number;
sideLength?: number;

}

Notice we're using a union of string literal types: "circle" and "square" to tell us whether
we should treat the shape as a circle or square respectively. By using "circle" | "square"
instead of string, we can avoid misspelling issues.

function handleShape(shape: Shape) {
// oops!
if (shape.kind === "rect") {

This condition will always return 'false' since the types '"circle" |
"square"' and '"rect"' have no overlap.

//

We can write a getArea function that applies the right logic based on if it's dealing with a circle
or square. We'll first try dealing with circles.

function getArea(shape: Shape) {
return Math.PI * shape.radius ** 2;

Object is possibly 'undefined'.

}

Under strictNullChecks that gives us an error - which is appropriate since radius might
not be defined. But what if we perform the appropriate checks on the kind property?

function getArea(shape: Shape) {
if (shape.kind === "circle") {
return Math.PI * shape.radius ** 2;

Object is possibly 'undefined'.

¥
}

Hmm, TypeScript still doesn't know what to do here. We've hit a point where we know more about
our values than the type checker does. We could try to use a non-null assertion (a ! after

shape.radius) tosay that radius is definitely present.

function getArea(shape: Shape) {
if (shape.kind === "circle") {
return Math.PI * shape.radius! ** 2;

¥
}

But this doesn't feel ideal. We had to shout a bit at the type-checker with those non-null assertions
(!)toconvince itthat shape.radius was defined, but those assertions are error-prone if we

start to move code around. Additionally, outside of strictNullChecks we're able to

accidentally access any of those fields anyway (since optional properties are just assumed to always
be present when reading them). We can definitely do better.

The problem with this encoding of Shape is that the type-checker doesn't have any way to know
whether or not radius or sideLength are present based onthe kind property. We need to
communicate what we know to the type checker. With that in mind, let's take another swing at
defining Shape .

interface Circle {
kind: "circle";
radius: number;

interface Square {
kind: "square";
sideLength: number;

}

type Shape = Circle | Square;

Here, we've properly separated Shape out into two types with different values for the kind
property, but radius and sidelLength are declared as required properties in their respective

types.

Let's see what happens here when we try to access the radius of a Shape.

function getArea(shape: Shape) {
return Math.PI * shape.radius ** 2;

Property 'radius' does not exist on type 'Shape'.
Property 'radius' does not exist on type 'Square'.

Like with our first definition of Shape, this is still an error. When radius was optional, we got an
error (only in strictNullChecks) because TypeScript couldn't tell whether the property was
present. Now that Shape is a union, TypeScript is telling us that shape mightbea Square, and
Square s don'thave radius defined on them! Both interpretations are correct, but only does
our new encoding of Shape still cause an error outside of strictNullChecks.

But what if we tried checking the kind property again?

function getArea(shape: Shape) {

if (shape.kind === "circle") {
return Math.PI * shape.radius ** 2;
// N = (parameter) shape: Circle
3

}

That got rid of the error! When every type in a union contains a common property with literal types,
TypeScript considers that to be a discriminated union, and can narrow out the members of the
union.

In this case, kind was that common property (which is what's considered a discriminant property
of Shape). Checking whether the kind property was "circle" gotrid of every typein
Shape thatdidn't have a kind property with the type "circle" . That narrowed shape
down to the type Circle.

The same checking works with switch statements as well. Now we can try to write our complete
getArea without any pesky ! non-null assertions.

function getArea(shape: Shape) {
switch (shape.kind) {
case '"circle":
return Math.PI * shape.radius ** 2;
// N = (parameter) shape: Circle

case '"square":
return shape.sideLength ** 2;
// N = (parameter) shape: Square

The important thing here was the encoding of Shape . Communicating the right information to
TypeScript - that Circle and Square were really two separate types with specific kind fields -

was crucial. Doing that let us write type-safe TypeScript code that looks no different than the
JavaScript we would've written otherwise. From there, the type system was able to do the "right"
thing and figure out the types in each branch of our switch statement.

As an aside, try playing around with the above example and remove some of the return keywords. You'll
see that type-checking can help avoid bugs when accidentally falling through different clauses in a

switch statement.

Discriminated unions are useful for more than just talking about circles and squares. They're good
for representing any sort of messaging scheme in JavaScript, like when sending messages over the
network (client/server communication), or encoding mutations in a state management framework.

The never type

When narrowing, you can reduce the options of a union to a point where you have removed all
possibilities and have nothing left. In those cases, TypeScript will use a never type to represent a

state which shouldn't exist.

Exhaustiveness checking

The never type is assignable to every type; however, no type is assignable to never (except
never itself). This means you can use narrowing and rely on never turning up to do exhaustive
checking in a switch statement.

For example, adding a default toour getArea function which tries to assign the shape to
never will raise when every possible case has not been handled.

type Shape = Circle | Square;

function getArea(shape: Shape) {
switch (shape.kind) {

case '"circle":
return Math.PI * shape.radius ** 2;

case "square":
return shape.sidelLength ** 2;

default:
const _exhaustiveCheck: never = shape;
return _exhaustiveCheck;

Adding a new member to the Shape union, will cause a TypeScript error:

interface Triangle {
kind: "triangle";
sidelLength: number;

}
type Shape = Circle | Square | Triangle;

function getArea(shape: Shape) {
switch (shape.kind) {

case 'circle":
return Math.PI * shape.radius ** 2;

case '"square":
return shape.sideLength ** 2;

default:
const _exhaustiveCheck: never = shape;

e e e e s S]

Type 'Triangle' is not assignable to type 'never'.

return _exhaustiveCheck;

More on Functions

Functions are the basic building block of any application, whether they're local functions, imported
from another module, or methods on a class. They're also values, and just like other values,
TypeScript has many ways to describe how functions can be called. Let's learn about how to write
types that describe functions.

Function Type Expressions

The simplest way to describe a function is with a function type expression. These types are
syntactically similar to arrow functions:

function greeter(fn: (a: string) => void) {
fn("Hello, World");

}

function printToConsole(s: string) {
console.log(s);

3

greeter(printToConsole);

The syntax (a: string) => void means "a function with one parameter, named a, of type
string, that doesn't have a return value". Just like with function declarations, if a parameter type isn't
specified, it's implicitly any .

Note that the parameter name is required. The function type (string) => void means "a function

with a parameter named string of type any "!
Of course, we can use a type alias to name a function type:

type GreetFunction = (a: string) => void;
function greeter(fn: GreetFunction) {
//

Call Signatures

In JavaScript, functions can have properties in addition to being callable. However, the function type
expression syntax doesn't allow for declaring properties. If we want to describe something callable
with properties, we can write a call signature in an object type:

type DescribableFunction = {
description: string;
(someArg: number): boolean;

}
function doSomething(fn: DescribableFunction) {
console.log(fn.description + " returned " + fn(6));

}

Note that the syntax is slightly different compared to a function type expression - use : between
the parameter list and the return type rather than =>.

Construct Signatures

JavaScript functions can also be invoked with the new operator. TypeScript refers to these as
constructors because they usually create a new object. You can write a construct signature by
adding the new keyword in front of a call signature:

type SomeConstructor = {
new (s: string): SomeObject;

¥

function fn(ctor: SomeConstructor) {
return new ctor("hello");

}

Some objects, like JavaScript's Date object, can be called with or without new . You can combine
call and construct signatures in the same type arbitrarily:

interface CallOrConstruct {
new (s: string): Date;
(n?: number): number;

}

Generic Functions

It's common to write a function where the types of the input relate to the type of the output, or
where the types of two inputs are related in some way. Let's consider for a moment a function that
returns the first element of an array:

function firstElement(arr: any[]) {
return arr[0];

}

This function does its job, but unfortunately has the return type any . It'd be better if the function
returned the type of the array element.

In TypeScript, generics are used when we want to describe a correspondence between two values.
We do this by declaring a type parameter in the function signature:

function firstElement<Type>(arr: Type[]): Type {
return arr[0];

3

By adding a type parameter Type to this function and using it in two places, we've created a link
between the input of the function (the array) and the output (the return value). Now when we call it,
a more specific type comes out:

// s is of type 'string'

const s = firstElement(["a", "b", "c"]);
// n is of type 'number'

const n = firstElement([1, 2, 3]);

Inference

Note that we didn't have to specify Type in this sample. The type was inferred - chosen
automatically - by TypeScript.

We can use multiple type parameters as well. For example, a standalone version of map would
look like this:

function map<Input, Output>(arr: Input[], func: (arg: Input) => Output): C
return arr.map(func);

¥

// Parameter 'n' is of type 'string'
// 'parsed' is of type 'number[]'
const parsed = map(["1", "2", "3"], (n) => parseInt(n));

Note that in this example, TypeScript could infer both the type of the Input type parameter (from
the given string array), as well as the Output type parameter based on the return value of the
function expression (number).

Constraints

We've written some generic functions that can work on any kind of value. Sometimes we want to
relate two values, but can only operate on a certain subset of values. In this case, we can use a
constraint to limit the kinds of types that a type parameter can accept.

Let's write a function that returns the longer of two values. To do this, we need a 1ength property
that's a number. We constrain the type parameter to that type by writing an extends clause:

function longest<Type extends { length: number }>(a: Type, b: Type) {
if (a.length >= b.length) {
return a;
} else {
return b;

// longerArray is of type 'number[]'

const longerArray = longest([1, 2], [1, 2, 3]);
// longerString is of type 'string'

const longerString = longest("alice", "bob");

// Error! Numbers don't have a 'length' property
const notOK = longest(10, 100);

Argument of type 'number' is not assignable to parameter of type '{
length: number; }'.

There are few interesting things to note in this example. We allowed TypeScript to infer the return
type of longest . Return type inference also works on generic functions.

Because we constrained Type to { length: number },we were allowed to access the

.length property of the a and b parameters. Without the type constraint, we wouldn't be able
to access those properties because the values might have been some other type without a length
property.

The types of longerArray and longerString were inferred based on the arguments.
Remember, generics are all about relating two or more values with the same type!

Finally, just as we'd like, the call to longest (10, 100) is rejected because the number type
doesn't have a .length property.

Working with Constrained Values

Here's a common error when working with generic constraints:

function minimumLength<Type extends { length: number }>(

obj: Type,
minimum: number
): Type {

if (obj.length >= minimum) {
return obj;

} else {
return { length: minimum };

Type '{ length: number; }' is not assignable to type 'Type'.

'{ length: number; }' is assignable to the constraint of type 'Type',
but 'Type' could be instantiated with a different subtype of constraint '{
length: number; }'.

}

}

It might look like this function is OK - Type is constrainedto { length: number 3}, and the
function either returns Type or a value matching that constraint. The problem is that the function

promises to return the same kind of object as was passed in, not just some object matching the
constraint. If this code were legal, you could write code that definitely wouldn't work:

// 'arr' gets value { length: 6 }

const arr = minimumLength([1, 2, 3], 6);

// and crashes here because arrays have

// a 'slice' method, but not the returned object!
console.log(arr.slice(0));

Specifying Type Arguments

TypeScript can usually infer the intended type arguments in a generic call, but not always. For
example, let's say you wrote a function to combine two arrays:

function combine<Type>(arrl: Type[], arr2: Type[]): Type[] {
return arrl.concat(arr2);

3

Normally it would be an error to call this function with mismatched arrays:

const arr = combine([1, 2, 3], ["hello"]);

Type 'string' is not assignable to type 'number'.

If you intended to do this, however, you could manually specify Type :

const arr = combine<string | number>([1, 2, 3], ["hello"]);

Guidelines for Writing Good Generic Functions

Writing generic functions is fun, and it can be easy to get carried away with type parameters.
Having too many type parameters or using constraints where they aren't needed can make
inference less successful, frustrating callers of your function.

Push Type Parameters Down

Here are two ways of writing a function that appear similar:

function firstElementl<Type>(arr: Type[]) {
return arr[0];

function firstElement2<Type extends any[]>(arr: Type) {
return arr[0];

// a: number (good)

const a = firstElement1([1, 2, 3]);
// b: any (bad)

const b = firstElement2([1, 2, 3]);

These might seem identical at first glance, but firstElementl is a much better way to write this
function. Its inferred return type is Type, but firstElement2 'sinferred return typeis any
because TypeScript has to resolve the arr[0] expression using the constraint type, rather than
"waiting" to resolve the element during a call.

Rule: When possible, use the type parameter itself rather than constraining it

Use Fewer Type Parameters

Here's another pair of similar functions:

function filteril<Type>(arr: Type[], func: (arg: Type) => boolean): Type[]
return arr.filter(func);

}

function filter2<Type, Func extends (arg: Type) => boolean>(
arr: Typel[],
func: Func

): Type[] {
return arr.filter(func);

}

We've created a type parameter Func that doesn't relate two values. That's always a red flag,
because it means callers wanting to specify type arguments have to manually specify an extra type

argument for no reason. Func doesn't do anything but make the function harder to read and
reason about!

Rule: Always use as few type parameters as possible

Type Parameters Should Appear Twice

Sometimes we forget that function doesn't need to be generic:

function greet<Str extends string>(s: Str) {
console.log("Hello, " + s);

}

greet("world");

We could just as easily have written a simpler version:

function greet(s: string) {
console.log("Hello, " + s);

}

Remember, type parameters are for relating the types of multiple values. If a type parameter is only
used once in the function signature, it's not relating anything.

Rule: If a type parameter only appears in one location, strongly reconsider if you actually need it

Optional Parameters

Functions in JavaScript often take a variable number of arguments. For example, the toFixed
method of number takes an optional digit count:

function f(n: number) {
console.log(n.toFixed()); // © arguments
console.log(n.toFixed(3)); // 1 argument

}

We can model this in TypeScript by marking the parameter as optional with ? :

function f(x?: number) {
//

}
f(); // OK

£(10); // OK

Although the parameter is specified as type number ,the x parameter will actually have the type
number | undefined because unspecified parameters in JavaScript get the value
undefined.

You can also provide a parameter default.

function f(x = 10) {
//

Now in the body of f, x will have type number because any undefined argument will be
replaced with 10 . Note that when a parameter is optional, callers can always pass undefined, as
this simply simulates a "missing"” argument:

declare function f(x?: number): void;
// cut

// All OK

(),

f(10);

f(undefined);

Optional Parameters in Callbacks

Once you've learned about optional parameters and function type expressions, it's very easy to
make the following mistakes when writing functions that invoke callbacks:

function myForEach(arr: any[], callback: (arg: any, index?: number) => voi
for (let i = 0; 1 < arr.length; i++) {
callback(arr[i], 1);
}
}

What people usually intend when writing index? as an optional parameter is that they want both
of these calls to be legal:

myForEach([1, 2, 3], (a) => console.log(a));
myForEach([1, 2, 3], (a, i) => console.log(a, 1));

What this actually means is that callback might get invoked with one argument In other words,
the function definition says that the implementation might look like this:

function myForEach(arr: any[], callback: (arg: any, index?: number) => voi
for (let i = 0; 1 < arr.length; i++) {
// I don't feel like providing the index today
callback(arr[i]);
b
}

In turn, TypeScript will enforce this meaning and issue errors that aren't really possible:

myForEach([1, 2, 3], (a, 1) => {
console.log(i.toFixed());

Object is possibly 'undefined'.

)

In JavaScript, if you call a function with more arguments than there are parameters, the extra
arguments are simply ignored. TypeScript behaves the same way. Functions with fewer parameters
(of the same types) can always take the place of functions with more parameters.

When writing a function type for a callback, neverwrite an optional parameter unless you intend to call the

function without passing that argument

Function Overloads

Some JavaScript functions can be called in a variety of argument counts and types. For example,
you might write a function to produce a Date that takes either a timestamp (one argument) or a
month/day/year specification (three arguments).

In TypeScript, we can specify a function that can be called in different ways by writing overload
signatures. To do this, write some number of function signatures (usually two or more), followed by
the body of the function:

function makeDate(timestamp: number): Date;
function makeDate(m: number, d: number, y: number): Date;
function makeDate(mOrTimestamp: number, d?: number, y?: number): Date {

if (d !== undefined && y !'== undefined) {
return new Date(y, mOrTimestamp, d);
} else {
return new Date(mOrTimestamp);
}
}
const dl1 = makeDate(12345678);
const d2 = makeDate(5, 5, 5);
const d3 = makeDate(1, 3);

No overload expects 2 arguments, but overloads do exist that expect either
1 or 3 arguments.

In this example, we wrote two overloads: one accepting one argument, and another accepting three
arguments. These first two signatures are called the overload signatures.

Then, we wrote a function implementation with a compatible signature. Functions have an
implementation signature, but this signature can't be called directly. Even though we wrote a
function with two optional parameters after the required one, it can't be called with two
parameters!

Overload Signatures and the Implementation Signature

This is a common source of confusion. Often people will write code like this and not understand
why there is an error:

function fn(x: string): void;
function fn() {
//

}

// Expected to be able to call with zero arguments
fn();

Expected 1 arguments, but got 0.

Again, the signature used to write the function body can't be "seen" from the outside.

The signature of the implementation is not visible from the outside. When writing an overloaded function,

you should always have two or more signatures above the implementation of the function.

The implementation signature must also be compatible with the overload signatures. For example,
these functions have errors because the implementation signature doesn't match the overloads in a
correct way:

function fn(x: boolean): void;
// Argument type isn't right
function fn(x: string): void;

This overload signature is not compatible with its implementation
signature.

function fn(x: boolean) {}

function fn(x: string): string;
// Return type isn't right
function fn(x: number): boolean;

This overload signature is not compatible with its implementation
signature.

function fn(x: string | number) {
return "oops";

Writing Good Overloads

Like generics, there are a few guidelines you should follow when using function overloads.
Following these principles will make your function easier to call, easier to understand, and easier to
implement.

Let's consider a function that returns the length of a string or an array:

function len(s: string): number;
function len(arr: any[]): number;
function len(x: any) {

return x.length;

This function is fine; we can invoke it with strings or arrays. However, we can't invoke it with a value
that might be a string or an array, because TypeScript can only resolve a function call to a single
overload:

len(""); // OK
len([0]); // OK
len(Math.random() > 0.5 ? "hello" : [0]);

No overload matches this call.
Overload 1 of 2, '(s: string): number', gave the following error.
Argument of type 'number[] | "hello"' is not assignable to parameter
of type 'string'.
Type 'number[]' is not assignable to type 'string'.
Overload 2 of 2, '(arr: any[]): number',6 gave the following error.
Argument of type 'number[] | "hello"' is not assignable to parameter
of type 'any[]'.
Type 'string' is not assignable to type 'any[]'.

Because both overloads have the same argument count and same return type, we can instead write
a non-overloaded version of the function:

function len(x: any[] | string) {
return x.length;

}

This is much better! Callers can invoke this with either sort of value, and as an added bonus, we
don't have to figure out a correct implementation signature.

Always prefer parameters with union types instead of overloads when possible

Declaring this in a Function

TypeScript will infer what the this should be in a function via code flow analysis, for example in
the following:

const user = {
id: 123,

admin: false,
becomeAdmin: function () {
this.admin = true;

}
I

TypeScript understands that the function user.becomeAdmin has a corresponding this which
is the outer object user . this, heh, can be enough for a lot of cases, but there are a lot of cases
where you need more control over what object this represents. The JavaScript specification
states that you cannot have a parameter called this, and so TypeScript uses that syntax space to
let you declare the type for this in the function body.

interface DB {
filterUsers(filter: (this: User) => boolean): User[];

}

const db = getDB();
const admins = db.filterUsers(function () {
return this.isAdmin;

1)

This pattern is common with callback-style APIs, where another object typically controls when your
function is called. Note that you need to use function and not arrow functions to get this
behavior:

const db = getDB();
const admins = db.filterUsers(() => this.isAdmin);

The containing arrow function captures the global value of 'this'.
Element implicitly has an 'any' type because type 'typeof globalThis' has
no index signature.

Other Types to Know About

There are some additional types you'll want to recognize that appear often when working with
function types. Like all types, you can use them everywhere, but these are especially relevant in the
context of functions.

void

void represents the return value of functions which don't return a value. It's the inferred type any
time a function doesn't have any return statements, or doesn't return any explicit value from
those return statements:

// The inferred return type is void
function noop() {
return;

}

In JavaScript, a function that doesn't return any value will implicitly return the value undefined .
However, void and undefined are notthe same thing in TypeScript. See the reference page
[[Why void is a special type]] for a longer discussion about this.

void is not the same as undefined .

object

The special type object refers to any value thatisn't a primitive (string, number, boolean,
symbol, null, or undefined). This is different from the empty object type { },and also
different from the global type Object . You can read the reference page about [[The global types]]
for information on what Object is for - long story short, don't ever use Object .

object is not Object . Always use object !

Note that in JavaScript, function values are objects: They have properties, have
Object.prototype in their prototype chain, are instanceof Object, you can call
Object.keys onthem, and so on. For this reason, function types are considered to be object s
in TypeScript.

unknown

The unknown type represents any value. This is similar to the any type, but is safer because it's
not legal to do anything with an unknown value:

function fi(a: any) {
a.b(); // OK

¥

function f2(a: unknown) {
a.b();

Object is of type 'unknown'.

}

This is useful when describing function types because you can describe functions that accept any
value without having any values in your function body.

Conversely, you can describe a function that returns a value of unknown type:

function safeParse(s: string): unknown {
return JSON.parse(s);

¥

// Need to be careful with 'obj'!
const obj = safeParse(someRandomString);

never

Some functions never return a value:

function fail(msg: string): never {
throw new Error(msg);

3

The never type represents values which are never observed. In a return type, this means that the
function throws an exception or terminates execution of the program.

never also appears when TypeScript determines there's nothing left in a union.

function fn(x: string | number) {

if (typeof x === "string") {
// do something

} else if (typeof x === "number") {
// do something else

} else {
X; // has type 'never'!

3

}
Function

The global type Function describes properties like bind, call, apply, and others present
on all function values in JavaScript. It also has the special property that values of type Function
can always be called; these calls return any :

function doSomething(f: Function) {
(1, 2, 3);
}

This is an untyped function call and is generally best avoided because of the unsafe any return

type.

If need to accept an arbitrary function but don't intend to call it, the type () => void is generally
safer.

Rest Parameters and Arguments

Rest Parameters Background Reading:
Rest Parameters

In addition to using optional parameters or overloads to make Spread Syntax
functions that can accept a variety of fixed argument counts, we can
also define functions that take an unbounded number of arguments using rest parameters.

A rest parameter appears after all other parameters, and uses the ... syntax:
function multiply(n: number, ...m: number[]) {
return m.map((x) => n * x);
}

// 'a' gets value [10, 20, 30, 40]
const a = multiply(10, 1, 2, 3, 4);

In TypeScript, the type annotation on these parameters is implicitly any[] instead of any, and
any type annotation given must be of the form Array<T>or T[], or a tuple type (which we'll
learn about later).

Rest Arguments

Conversely, we can provide a variable number of arguments from an array using the spread syntax.
For example, the push method of arrays takes any number of arguments:

const arrl = [1, 2, 3];
const arr2 = [4, 5, 6];
arrl.push(...arr2);

Note that in general, TypeScript does not assume that arrays are immutable. This can lead to some
surprising behavior:

// Inferred type is number[] -- "an array with zero or more numbers",
// not specifically two numbers

const args = [8, 5];

const angle = Math.atan2(...args);

Expected 2 arguments, but got O or more.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

The best fix for this situation depends a bit on your code, but in general a const context is the

most straightforward solution:

// Inferred as 2-length tuple
const args = [8, 5] as const;

// OK

const angle = Math.atan2(...args);

Using rest arguments may require turning on downlevelIteration when targeting older

runtimes.

Parameter Destructuring

You can use parameter destructuring to conveniently unpack
objects provided as an argument into one or more local variables in
the function body. In JavaScript, it looks like this:

Background Reading:

Destructuring_Assignment

function sum({ a, b, c }) {
console.log(a + b + c);

}
sum({ a: 10, b: 3, c: 9 });

The type annotation for the object goes after the destructuring syntax:

function sum({ a, b, c }: { a: number; b: number; c: number }) {
console.log(a + b + c);

}

This can look a bit verbose, but you can use a named type here as well:

// Same as prior example
type ABC = { a: number; b: number; c: number };
function sum({ a, b, c }: ABC) {

console.log(a + b + c);

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://www.typescriptlang.org/tsconfig/#downlevelIteration

Assignability of Functions

Return type void
The void return type for functions can produce some unusual, but expected behavior.

Contextual typing with a return type of void does not force functions to not return something.
Another way to say this is a contextual function type with a void return type (type vf = ()
=> void), when implemented, can return any other value, but it will be ignored.

Thus, the following implementations of the type () => void are valid:

type voidFunc = () => void,;

const f1: voidFunc
return true;

I

() =>A{

const f2: voidFunc () => true;

const f3: voidFunc
return true;

function () {

+

And when the return value of one of these functions is assigned to another variable, it will retain the
type of void:

const vl = f1();
const v2 = f2();
const v3 = f3();

This behavior exists so that the following code is valid even though Array.prototype.push
returns a number and the Array.prototype.forEach method expects a function with a
return type of void.

const src = [1, 2, 3];
const dst [0];

src.forEach((el) => dst.push(el));

There is one other special case to be aware of when a literal function definition has a void return
type, that function must not return anything.

function f2(): void {
// @ts-expect-error
return true;

const f3 = function (): void {
// @ts-expect-error
return true;

I

For more on void please refer to these other documentation entries:

¢ v1 handbook
e v2 handbook

e FAQ - "Why are functions returning_non-void assignable to function returning void?"

https://www.typescriptlang.org/docs/handbook/basic-types.html#void
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://github.com/Microsoft/TypeScript/wiki/FAQ#why-are-functions-returning-non-void-assignable-to-function-returning-void

Object Types

In JavaScript, the fundamental way that we group and pass around data is through objects. In
TypeScript, we represent those through object types.

As we've seen, they can be anonymous:

function greet(person: { name: string; age: number }) {
return "Hello " + person.age;

}

or they can be named by using either an interface

interface Person {
name: string;
age: number;

¥

function greet(person: Person) {
return "Hello " + person.age;

}

or a type alias.

type Person = {
name: string;
age: number;

i

function greet(person: Person) {
return "Hello " + person.age;

}

In all three examples above, we've written functions that take objects that contain the property
name (which mustbea string)and age (which mustbea number)

Property Modifiers

Each property in an object type can specify a couple of things: the type, whether the property is
optional, and whether the property can be written to.

Optional Properties

Much of the time, we'll find ourselves dealing with objects that might have a property set. In those
cases, we can mark those properties as optional by adding a question mark (?) to the end of their

names.

interface PaintOptions {
shape: Shape;
XPos?: number;
yP0s?: number;

}

function paintShape(opts: PaintOptions) {
/] ...

const shape = getShape();

paintShape({ shape });

paintShape({ shape, xPos: 100 });
paintShape({ shape, yPos: 100 });
paintShape({ shape, xPos: 100, yPos: 100 });

In this example, both xPos and yPos are considered optional. We can choose to provide either
of them, so every call above to paintShape is valid. All optionality really says is that if the
property is set, it better have a specific type.

interface PaintOptions {
shape: Shape;
XxPos?: number;
yP0s?: number;

}

function paintShape(opts: PaintOptions) {
//

const shape = getShape();
paintShape({ shape });
paintShape({ shape, xPos: 100 });

We can also read from those properties - but when we do under strictNullChecks,
TypeScript will tell us they're potentially undefined .

function paintShape(opts: PaintOptions) {
let xPos = opts.xPos;
// N = (property) PaintOptions.xPos?: number | undefined

let yPos = opts.yPos;
// N = (property) PaintOptions.yPos?: number | undefined

//

In JavaScript, even if the property has never been set, we can still access it - it's just going to give us
the value undefined . We can just handle undefined specially.

function paintShape(opts: PaintOptions) {

let xPos = opts.xPos === undefined ? 0 : opts.xPos;
// N = let xPos: number

let yPos = opts.yPos === undefined ? 0 : opts.yPos;
// A = let yPos: number

//

Note that this pattern of setting defaults for unspecified values is so common that JavaScript has
syntax to support it.

function paintShape({ shape, xPos = 0, yPos = 0 }: PaintOptions) {
console.log("x coordinate at", xPos);
// A = var xPos: number

console.log("y coordinate at", yPos);
// A = var yPos: number

//

Here we used a destructuring pattern for paintShape 's parameter, and provided default values
for xPos and yPos.Now xPos and yPos are both definitely present within the body of
paintShape, but optional for any callers to paintShape.

Note that there is currently no way to place type annotations within destructuring patterns. This is because

the following syntax already means something different in JavaScript.

function draw({ shape: Shape, xPos: number = 100 /*...*/ }) {
render (shape);

Cannot find name 'shape'. Did you mean 'Shape'?

render (XPOS) '

Cannot find name 'xPos'.

}

In an object destructuring pattern, shape: Shape means "grab the property shape and
redefine it locally as a variable named Shape . Likewise xPos: number creates a variable
named number whose value is based on the parameter's xPos .

readonly Properties

Properties can also be marked as readonly for TypeScript. While it won't change any behavior at
runtime, a property marked as readonly can't be written to during type-checking.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Default_values

interface SomeType {
readonly prop: string;

3

function doSomething(obj: SomeType) {
// We can read from 'obj.prop'.

console.log(prop has the value '${obj.prop}'.");
// But we can't re-assign 1it.
obj.prop = "hello";

}

Cannot assign to 'prop' because it is a read-only property.

Using the readonly modifier doesn't necessarily imply that a value is totally immutable - or in

other words, that its internal contents can't be changed. It just means the property itself can't be re-
written to.

interface Home {

readonly resident: { name: string; age: number };
}

function visitForBirthday(home: Home) {

// We can read and update properties from 'home.resident'.

console.log(Happy birthday ${home.resident.name}! "),
home.resident.age++;

}

function evict(home: Home) {

// But we can't write to the 'resident' property itself on a 'Home'.
home.resident = {

Cannot assign to 'resident' because it is a read-only property.
name: "Victor the Evictor",
age: 42,
i
}

It's important to manage expectations of what readonly implies. It's useful to signal intent

during development time for TypeScript on how an object should be used. TypeScript doesn't factor

in whether properties on two types are readonly when checking whether those types are
compatible, so readonly properties can also change via aliasing.

interface Person {
name: string;
age: number;

}

interface ReadonlyPerson {
readonly name: string;
readonly age: number;

}

let writablePerson: Person = {
name: "Person McPersonface",
age: 42,

3

// works
let readonlyPerson: ReadonlyPerson = writablePerson;

console.log(readonlyPerson.age); // prints '42'
writablePerson.age++;
console.log(readonlyPerson.age); // prints '43'

Extending Types

It's pretty common to have types that might be more specific versions of other types. For example,
we might have a BasicAddress type that describes the fields necessary for sending letters and

packages in the U.S.

interface BasicAddress {
name?: string;
street: string;
city: string;
country: string;
postalCode: string;

In some situations that's enough, but addresses often have a unit number associated with them if
the building at an address has multiple units. We can then describe an AddresswWithuUnit .

interface AddressWithUnit {
name?: string;
unit: string;
street: string;
city: string;
country: string;
postalCode: string;

This does the job, but the downside here is that we had to repeat all the other fields from
BasicAddress when our changes were purely additive. Instead, we can extend the original

BasicAddress type and just add the new fields that are unique to Addresswithunit .

interface BasicAddress {
name?: string;
street: string;
city: string;
country: string;
postalCode: string;

interface AddressWithUnit extends BasicAddress {
unit: string;

The extends keyword on an interface allows us to effectively copy members from other
named types, and add whatever new members we want. This can be useful for cutting down the
amount of type declaration boilerplate we have to write, and for signaling intent that several
different declarations of the same property might be related. For example, AddresswWithunit
didn't need to repeat the street property, and because street originates from
BasicAddress, areader will know that those two types are related in some way.

interface s can also extend from multiple types.

interface Colorful {
color: string;

3

interface Circle {
radius: number;

interface ColorfulCircle extends Colorful, Circle {}

const cc: ColorfulCircle = {
color: "red",
radius: 42,

+

Intersection Types

interface s allowed us to build up new types from other types by extending them. TypeScript
provides another construct called intersection types that is mainly used to combine existing object

types.

An intersection type is defined using the & operator.

interface Colorful {
color: string;

}

interface Circle {
radius: number;

type ColorfulCircle = Colorful & Circle;

Here, we've intersected Colorful and Circle to produce a new type that has all the members
of Colorful and Circle.

function draw(circle: Colorful & Circle) {
console.log(Color was ${circle.color});
console.log(Radius was ${circle.radius});

}

// okay
draw({ color: "blue", radius: 42 });

// oops
draw({ color: "red", raidus: 42 });

Argument of type '{ color: string; raidus: number; }' is not assignable to
parameter of type 'Colorful & Circle'.

Object literal may only specify known properties, but 'raidus' does not
exist in type 'Colorful & Circle'. Did you mean to write 'radius'?

Interfaces vs. Intersections

We just looked at two ways to combine types which are similar, but are actually subtly different.
With interfaces, we could use an extends clause to extend from other types, and we were able to
do something similar with intersections and name the result with a type alias. The principle
difference between the two is how conflicts are handled, and that difference is typically one of the
main reasons why you'd pick one over the other between an interface and a type alias of an
intersection type.

Generic Object Types

Let's imagine a Box type that can contain any value - strings, number s, Giraffes,
whatever.

interface Box {
contents: any;

Right now, the contents property is typed as any , which works, but can lead to accidents down
the line.

We could instead use unknown , but that would mean that in cases where we already know the
type of contents, we'd need to do precautionary checks, or use error-prone type assertions.

interface Box {
contents: unknown;

let x: Box = {
contents: "hello world",

+

// we could check 'x.contents'
if (typeof x.contents === "string") {
console.log(x.contents.toLowerCase());

}

// or we could use a type assertion
console.log((x.contents as string).toLowerCase());

One type safe approach would be to instead scaffold out different Box types for every type of
contents.

interface NumberBox {
contents: number;

interface StringBox {
contents: string;

3

interface BooleanBox {
contents: boolean;

But that means we'll have to create different functions, or overloads of functions, to operate on
these types.

function setContents(box: StringBox, newContents: string): void;

function setContents(box: NumberBox, newContents: number): void;

function setContents(box: BooleanBox, newContents: boolean): void;

function setContents(box: { contents: any }, newContents: any) {
box.contents = newContents;

That's a lot of boilerplate. Moreover, we might later need to introduce new types and overloads. This
is frustrating, since our box types and overloads are all effectively the same.

Instead, we can make a generic Box type which declares a type parameter.

interface Box<Type> {
contents: Type;

You might read this as a€ceA Box of Type is something whose contents have type
Type a€0. Later on, when we refer to Box , we have to give a type argumentin place of Type.

let box: Box<string>;

Think of Box as a template for a real type, where Type is a placeholder that will get replaced with
some other type. When TypeScript sees Box<string>, it will replace every instance of Type in
Box<Type> with string, and end up working with something like { contents: string

} . In other words, Box<string> and our earlier StringBox work identically.

interface Box<Type> {
contents: Type;

}

interface StringBox {
contents: string;

}

let boxA: Box<string> = { contents: "hello" };
boxA.contents;
// N = (property) Box<string>.contents: string

let boxB: StringBox = { contents: "world" };
boxB.contents;
// N = (property) StringBox.contents: string

Box is reusable in that Type can be substituted with anything. That means that when we need a
box for a new type, we don't need to declare a new Box type at all (though we certainly could if we
wanted to).

interface Box<Type> {
contents: Type;

¥

interface Apple {
//

// Same as '{ contents: Apple }'.
type AppleBox = Box<Apple>;

This also means that we can avoid overloads entirely by instead using generic functions.

function setContents<Type>(box: Box<Type>, newContents: Type) {
box.contents = newContents;

file:///home/runner/work/TypeScript-Website/TypeScript-Website/packages/handbook-epub/assets/More-on-Functions.md#Generic-Functions

It is worth noting that type aliases can also be generic. We could have defined our new
Box<Type> interface, which was:

interface Box<Type> {
contents: Type;

by using a type alias instead:

type Box<Type> = {
contents: Type;

+

Since type aliases, unlike interfaces, can describe more than just object types, we can also use them
to write other kinds of generic helper types.

type OrNull<Type> = Type | null;
type OneOrMany<Type> = Type | Typel[];

type OneOrManyOrNull<Type> = OrNull<OneOrMany<Type>>;
// N = type OneOrManyOrNull<Type> = OneOrMany<Type> | null

type OneOrManyOrNullStrings = OneOrManyOrNull<string>;
// A = type OneOrManyOrNullStrings = OneOrMany<string> | null

We'll circle back to type aliases in just a little bit.

The Array Type

Generic object types are often some sort of container type that work independently of the type of
elements they contain. It's ideal for data structures to work this way so that they're re-usable across
different data types.

It turns out we've been working with a type just like that throughout this handbook: the Array
type. Whenever we write out types like number[] or string[], that's really just a shorthand

for Array<number> and Array<string>.

function doSomething(value: Array<string>) {
/7 ...

let myArray: string[] = ["hello", "world"];
// either of these work!

doSomething(myArray);
doSomething(new Array('"hello", "world")),

Much like the Box type above, Array itself is a generic type.

interface Array<Type> {
/**
* Gets or sets the length of the array.
*/
length: number;

/**
* Removes the last element from an array and returns it.
*/

pop(): Type | undefined;

/**
* Appends new elements to an array, and returns the new length of the ¢
*/

push(...items: Type[]): number;

//

Modern JavaScript also provides other data structures which are generic, like Map<K, V>,
Set<T>,and Promise<T> . All this really means is that because of how Map, Set, and
Promise behave, they can work with any sets of types.

The ReadonlyArray Type

The ReadonlyArray is a special type that describes arrays that shouldn't be changed.

function doStuff(values: ReadonlyArray<string>) {
// We can read from 'values'...
const copy = values.slice();
console.log(The first value is ${values[0]});

// ...but we can't mutate 'values'.
values.push("hello!");

Property 'push' does not exist on type 'readonly string[]'.

}

Much like the readonly modifier for properties, it's mainly a tool we can use for intent. When we
see a function that returns ReadonlyArray s, it tells us we're not meant to change the contents at
all, and when we see a function that consumes ReadonlyArray s, it tells us that we can pass any
array into that function without worrying that it will change its contents.

Unlike Array, thereisn'ta ReadonlyArray constructor that we can use.

new ReadonlyArray("red", "green", "blue");

'ReadonlyArray' only refers to a type, but is being used as a value here.

Instead, we can assign regular Array s to ReadonlyArray s.

const roArray: ReadonlyArray<string> = ["red", "green", "blue"];

Just as TypeScript provides a shorthand syntax for Array<Type> with Type[], italso provides
a shorthand syntax for ReadonlyArray<Type> with readonly Type[].

function doStuff(values: readonly string[]) {
// We can read from 'values'...
const copy = values.slice();
console.log(The first value is ${values[0]});

// ...but we can't mutate 'values'.
values.push("hello!");

Property 'push' does not exist on type 'readonly string[]'.

}

One last thing to note is that unlike the readonly property modifier, assignability isn't
bidirectional between regular Array s and ReadonlyArray s.

let x: readonly string[] = [];
let y: string[] = [1;

X =Y;
y =%

The type 'readonly string[]' is 'readonly' and cannot be assigned to the
mutable type 'string[]'.

Tuple Types

A tuple typeis another sort of Array type that knows exactly how many elements it contains, and
exactly which types it contains at specific positions.

type StringNumberPair = [string, number];

Here, StringNumberPair is atuple type of string and number .Like ReadonlyArray, it
has no representation at runtime, but is significant to TypeScript. To the type system,
StringNumberPair describes arrays whose 0 index contains a string and whose 1 index
contains a number .

function doSomething(pair: [string, number]) {
const a = pair[0];
// N = const a: string

const b = pair[1];
// A const b: number

//

doSomething(["hello", 42]);

If we try to index past the number of elements, we'll get an error.

function doSomething(pair: [string, number]) {
//

const ¢ = pair[g];

Tuple type '[string, number]' of length '2' has no element at index '2'.

We can also destructure tuples using JavaScript's array destructuring.

function doSomething(stringHash: [string, number]) {
const [inputString, hash] = stringHash;

console.log(inputString);

// A = const inputString: string

console.log(hash);
// A = const hash: number

}

Tuple types are useful in heavily convention-based APIs, where each element's meaning is "obvious". This

gives us flexibility in whatever we want to name our variables when we destructure them. In the above

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Array_destructuring

example, we were able to name elements ® and 1 to whatever we wanted.

However, since not every user holds the same view of what's obvious, it may be worth reconsidering

whether using objects with descriptive property names may be better for your API.

Other than those length checks, simple tuple types like these are equivalent to types which are

versions of Array s that declare properties for specific indexes, and that declare length with a

numeric literal type.

interface StringNumberPair {
// specialized properties
length: 2;
0: string;
1: number;

// Other 'Array<string | number>' members...
slice(start?: number, end?: number): Array<string | number>;

Another thing you may be interested in is that tuples can have optional properties by writing out a
question mark (? after an element's type). Optional tuple elements can only come at the end, and

also affect the type of length.

type Either2d0r3d = [number, number, number?];

function setCoordinate(coord: Either2d0Or3d) {
const [x, y, z] = coord;
// A = const z: number | undefined

console.log(Provided coordinates had ${coord.length} dimensions’);

}

// N = (property) length:

2 |

Tuples can also have rest elements, which have to be an array/tuple type.

type StringNumberBooleans = [string, number, ...boolean[]];
type StringBooleansNumber [string, ...boolean[], number];
type BooleansStringNumber [...boolean[], string, number];

e StringNumberBooleans describes a tuple whose first two elements are string and
number respectively, but which may have any number of boolean s following.

e StringBooleansNumber describes a tuple whose first elementis string and then any
number of boolean s and ending with a number .

e BooleansStringNumber describes a tuple whose starting elements any number of
boolean s and ending witha string thena number .

A tuple with a rest element has no set "length” - it only has a set of well-known elements in
different positions.

const a: StringNumberBooleans
const b: StringNumberBooleans
const c: StringNumberBooleans

["hello", 17;
["beautiful", 2, true];
["world", 3, true, false, true, false, trt

Why might optional and rest elements be useful? Well, it allows TypeScript to correspond tuples
with parameter lists. Tuples types can be used in rest parameters and arguments, so that the
following:

function readButtonInput(...args: [string, number, ...boolean[]]) {
const [name, version, ...input] = args;
//

}

is basically equivalent to:

function readButtonInput(name: string, version: number, ...input: boolean|
//

This is handy when you want to take a variable number of arguments with a rest parameter, and
you need a minimum number of elements, but you don't want to introduce intermediate variables.

readonly Tuple Types

One final note about tuple types - tuples types have readonly variants, and can be specified by
sticking a readonly modifier in front of them - just like with array shorthand syntax.

file:///home/runner/work/TypeScript-Website/TypeScript-Website/packages/handbook-epub/assets/More-on-Functions.md#rest-parameters-and-arguments

function doSomething(pair: readonly [string, number]) {
// ..

As you might expect, writing to any property of a readonly tupleisn't allowed in TypeScript.

function doSomething(pair: readonly [string, number]) {
pair[0] = "hello!";

Cannot assign to '@' because it is a read-only property.

}

Tuples tend to be created and left un-modified in most code, so annotating types as readonly
tuples when possible is a good default. This is also important given that array literals with const
assertions will be inferred with readonly tuple types.

let point = [3, 4] as const;

function distanceFromOrigin([x, y]: [number, number]) {
return Math.sqrt(x ** 2 +y ** 2);

}
distanceFromOrigin(QQ;QE);

Argument of type 'readonly [3, 4]' is not assignable to parameter of type
'[number, number]'.

The type 'readonly [3, 4]' is 'readonly' and cannot be assigned to the
mutable type '[number, number]'.

Here, distanceFromOrigin never modifies its elements, but expects a mutable tuple. Since
point 's type was inferred as readonly [3, 4],itwon't be compatible with [number,
number] since that type can't guarantee point 's elements won't be mutated.

Creating Types from Types

TypeScript's type system is very powerful because it allows expressing types in terms of other
types.

The simplest form of this idea is generics, we actually have a wide variety of type operators
available to us. It's also possible to express types in terms of values that we already have.

By combining various type operators, we can express complex operations and values in a succinct,
maintainable way. In this section we'll cover ways to express a new type in terms of an existing type
or value.

e Generics - Types which take parameters

e Keyof Type Operator - Using the keyof operator to create new types

e Typeof Type Operator - Using the typeof operator to create new types

e |ndexed Access Types - Using Type['a'] syntaxto access a subset of a type

e Conditional Types - Types which act like if statements in the type system

e Template Literal Types - Mapped types which change properties via template literal strings

https://www.typescriptlang.org/docs/handbook/2/generics.html
https://www.typescriptlang.org/docs/handbook/2/keyof-types.html
https://www.typescriptlang.org/docs/handbook/2/typeof-types.html
https://www.typescriptlang.org/docs/handbook/2/indexed-access-types.html
https://www.typescriptlang.org/docs/handbook/2/conditional-types.html
https://www.typescriptlang.org/docs/handbook/2/mapped-types.html
https://www.typescriptlang.org/docs/handbook/2/template-literal-types.html

Generics

A major part of software engineering is building components that not only have well-defined and
consistent APIs, but are also reusable. Components that are capable of working on the data of today
as well as the data of tomorrow will give you the most flexible capabilities for building up large
software systems.

In languages like C# and Java, one of the main tools in the toolbox for creating reusable
components is generics, that is, being able to create a component that can work over a variety of
types rather than a single one. This allows users to consume these components and use their own

types.

Hello World of Generics

To start off, let's do the "hello world" of generics: the identity function. The identity function is a
function that will return back whatever is passed in. You can think of this in a similar way to the
echo command.

Without generics, we would either have to give the identity function a specific type:

function identity(arg: number): number {
return arg,

}

Or, we could describe the identity function using the any type:

function identity(arg: any): any {
return arg,

}

While using any is certainly generic in that it will cause the function to accept any and all types for
the type of arg, we actually are losing the information about what that type was when the

function returns. If we passed in a number, the only information we have is that any type could be
returned.

Instead, we need a way of capturing the type of the argument in such a way that we can also use it
to denote what is being returned. Here, we will use a type variable, a special kind of variable that

works on types rather than values.

function identity<Type>(arg: Type): Type {
return arg;

}

We've now added a type variable Type to the identity function. This Type allows us to capture
the type the user provides (e.g. number), so that we can use that information later. Here, we use
Type again as the return type. On inspection, we can now see the same type is used for the

argument and the return type. This allows us to traffic that type information in one side of the
function and out the other.

We say that this version of the identity function is generic, as it works over a range of types.
Unlike using any , it's also just as precise (ie, it doesn't lose any information) as the first
identity function that used numbers for the argument and return type.

Once we've written the generic identity function, we can call it in one of two ways. The first way is to
pass all of the arguments, including the type argument, to the function:

let output = identity<string>("myString");
// A let output: string

Here we explicitly set Type tobe string as one of the arguments to the function call, denoted
using the <> around the arguments rather than () .

The second way is also perhaps the most common. Here we use type argument inference -- that is,
we want the compiler to set the value of Type for us automatically based on the type of the
argument we pass in:

let output
// A

identity("myString");
let output: string

Notice that we didn't have to explicitly pass the type in the angle brackets (<>); the compiler just
looked at the value "myString",h andset Type to its type. While type argument inference can
be a helpful tool to keep code shorter and more readable, you may need to explicitly pass in the

type arguments as we did in the previous example when the compiler fails to infer the type, as may
happen in more complex examples.

Working with Generic Type Variables

When you begin to use generics, you'll notice that when you create generic functions like
identity, the compiler will enforce that you use any generically typed parameters in the body of
the function correctly. That is, that you actually treat these parameters as if they could be any and all
types.

Let's take our identity function from earlier:

function identity<Type>(arg: Type): Type {
return arg,

}

What if we want to also log the length of the argument arg to the console with each call? We
might be tempted to write this:

function loggingIdentity<Type>(arg: Type): Type {
console.log(arg.length);

Property 'length' does not exist on type 'Type'.

return arg,

}

When we do, the compiler will give us an error that we're using the .length member of arg,
but nowhere have we said that arg has this member. Remember, we said earlier that these type

variables stand in for any and all types, so someone using this function could have passed in a
number instead, which does not havea .length member.

Let's say that we've actually intended this function to work on arrays of Type rather than Type
directly. Since we're working with arrays, the .length member should be available. We can
describe this just like we would create arrays of other types:

< >(arg: [1): [1{
console.log(arg.length);
arg;

You can read the type of loggingIdentity as “the generic function loggingIdentity takes
a type parameter Type, and an argument arg which is an array of Type s, and returns an array
of Type s." If we passed in an array of numbers, we'd get an array of numbers back out, as Type
would bind to number . This allows us to use our generic type variable Type as part of the types
we're working with, rather than the whole type, giving us greater flexibility.

We can alternatively write the sample example this way:
< >(arg: < >): < > {

console.log(arg.length); // Array has a .length, so no more error
arg;

You may already be familiar with this style of type from other languages. In the next section, we'll
cover how you can create your own generic types like Array<Type>.

Generic Types

In previous sections, we created generic identity functions that worked over a range of types. In this
section, we'll explore the type of the functions themselves and how to create generic interfaces.

The type of generic functions is just like those of non-generic functions, with the type parameters

listed first, similarly to function declarations:

function identity<Type>(arg: Type): Type {
return arg;

3

let myIdentity: <Type>(arg: Type) => Type = identity;

We could also have used a different name for the generic type parameter in the type, so long as the
number of type variables and how the type variables are used line up.

function identity<Type>(arg: Type): Type {
return arg;

}

let myIdentity: <Input>(arg: Input) => Input = identity;

We can also write the generic type as a call signature of an object literal type:

function identity<Type>(arg: Type): Type {
return arg;

}

let myIdentity: { <Type>(arg: Type): Type } = identity;

Which leads us to writing our first generic interface. Let's take the object literal from the previous
example and move it to an interface:

interface GenericIdentityFn {
<Type>(arg: Type): Type;
}

function identity<Type>(arg: Type): Type {
return arg;

}

let myIdentity: GenericIdentityFn = identity;

In a similar example, we may want to move the generic parameter to be a parameter of the whole
interface. This lets us see what type(s) we're generic over (e.g. Dictionary<string> rather than
just Dictionary). This makes the type parameter visible to all the other members of the
interface.

interface GenericIdentityFn<Type> {
(arg: Type): Type;

function identity<Type>(arg: Type): Type {
return arg;

let myIdentity: GenericIdentityFn<number> = identity;

Notice that our example has changed to be something slightly different. Instead of describing a
generic function, we now have a non-generic function signature that is a part of a generic type.
When we use GenericIdentityFn, we now will also need to specify the corresponding type
argument (here: number), effectively locking in what the underlying call signature will use.
Understanding when to put the type parameter directly on the call signature and when to put it on
the interface itself will be helpful in describing what aspects of a type are generic.

In addition to generic interfaces, we can also create generic classes. Note that it is not possible to
create generic enums and namespaces.

Generic Classes

A generic class has a similar shape to a generic interface. Generic classes have a generic type
parameter list in angle brackets (<>) following the name of the class.

class GenericNumber<NumType> {
zeroValue: NumType;
add: (x: NumType, y: NumType) => NumType;

let myGenericNumber = new GenericNumber<number>();
myGenericNumber.zerovValue = 0;
myGenericNumber.add = function (x, y) {

return x + vy;

}

This is a pretty literal use of the GenericNumber class, but you may have noticed that nothing is
restricting it to only use the number type. We could have instead used string or even more

complex objects.

let stringNumeric = new GenericNumber<string>();
stringNumeric.zeroValue = "";
stringNumeric.add = function (X%, y) {

return x + vy;

i

console.log(stringNumeric.add(stringNumeric.zeroValue, "test"));

Just as with interface, putting the type parameter on the class itself lets us make sure all of the
properties of the class are working with the same type.

As we covered in our section on classes, a class has two sides to its type: the static side and the
instance side. Generic classes are only generic over their instance side rather than their static side,
so when working with classes, static members can not use the class's type parameter.

Generic Constraints

If you remember from an earlier example, you may sometimes want to write a generic function that
works on a set of types where you have some knowledge about what capabilities that set of types
will have. In our loggingIdentity example, we wanted to be able to access the .length
property of arg, butthe compiler could not prove that every type had a .length property, so it
warns us that we can't make this assumption.

function loggingIdentity<Type>(arg: Type): Type {
console.log(arg.length);

Property 'length' does not exist on type 'Type'.

return arg;

Instead of working with any and all types, we'd like to constrain this function to work with any and
all types that alsoA have the .length property. As long as the type has this member, we'll allow
it, but it's required to have at least this member. To do so, we must list our requirement as a
constraint on what Type can be.

To do so, we'll create an interface that describes our constraint. Here, we'll create an interface that
has a single .length property and then we'll use this interface and the extends keyword to

https://www.typescriptlang.org/docs/handbook/classes.html

denote our constraint:

interface Lengthwise {
length: number;

}

function loggingIdentity<Type extends Lengthwise>(arg: Type): Type {
console.log(arg.length); // Now we know it has a .length property, so nc

return arg;

}

Because the generic function is now constrained, it will no longer work over any and all types:

loggingIdentity(Q);

Argument of type 'number' is not assignable to parameter of type
'Lengthwise'.

Instead, we need to pass in values whose type has all the required properties:

loggingIdentity({ length: 10, value: 3 });

Using Type Parameters in Generic Constraints

You can declare a type parameter that is constrained by another type parameter. For example, here
we'd like to get a property from an object given its name. We'd like to ensure that we're not
accidentally grabbing a property that does not exist on the obj , so we'll place a constraint

between the two types:

function getProperty<Type, Key extends keyof Type>(obj: Type, key: Key) {
return obj[key];

b
let x = { a: 1, b: 2, c: 3, d: 4 };

getProperty(x, "a");
getProperty(x, "m");

Argument of type '"m"' is not assignable to parameter of type '"a" | "b" |
"C" | IIdIII.

Using Class Types in Generics

When creating factories in TypeScript using generics, it is necessary to refer to class types by their
constructor functions. For example,

function create<Type>(c: { new (): Type }): Type {
return new c();

}

A more advanced example uses the prototype property to infer and constrain relationships between
the constructor function and the instance side of class types.

class BeeKeeper {
hasMask: boolean;

class ZooKeeper {
nametag: string;

class Animal {
numLegs: number;

class Bee extends Animal {
keeper: BeeKeeper;

class Lion extends Animal {
keeper: ZooKeeper;

function createInstance<A extends Animal>(c:

return new c();

createInstance(Lion).keeper.nametag;
createInstance(Bee).keeper.hasMask;

new () => A): A {

This pattern is used to power the mixins design pattern.

https://www.typescriptlang.org/docs/handbook/mixins.html

Keyof Type Operator

The keyof type operator

The keyof operator takes an object type and produces a string or numeric literal union of its keys:

type Point = { x: number; y: number };
type P = keyof Point;
// N = type P = keyof Point

If the type has a string or number index signature, keyof will return those types instead:

type Arrayish = { [n: number]: unknown };
type A = keyof Arrayish;
// AN = type A = number

type Mapish = { [k: string]: boolean };
type M = keyof Mapish;
// N = type M = string | number

Note that in this example, M is string | number --thisis because JavaScript object keys are
always coerced to a string, so obj[0] is always the sameas obj["0"].

keyof types become especially useful when combined with mapped types, which we'll learn more
about later.

Typeof Type Operator

The typeof type operator

JavaScript already has a typeof operator you can use in an expression context:

// Prints "string"
console.log(typeof "Hello world");

TypeScript adds a typeof operator you can use in a type context to refer to the type of a variable
or property:

let s = "hello";
let n: typeof s;
// N = let n: string

This isn't very useful for basic types, but combined with other type operators, you can use typeof

to conveniently express many patterns. For an example, let's start by looking at the predefined type
ReturnType<T>. It takes a function type and produces its return type:

type Predicate = (x: unknown) => boolean;
type K = ReturnType<Predicate>;
// N = type K = boolean

If we try to use ReturnType on a function name, we see an instructive error:

function f() {
return { x: 10, y: 3 };

¥
type P = ReturnType<f>;

'f' refers to a value, but is being used as a type here. Did you mean
"typeof f'?

Remember that values and types aren't the same thing. To refer to the type that the value f has, we
use typeof:

function f() {
return { x: 10, y: 3 };

}
type P = ReturnType<typeof f>;
// N = type P = {
// X: number;
// y: number;
// 3
Limitations

TypeScript intentionally limits the sorts of expressions you can use typeof on.

Specifically, it's only legal to use typeof on identifiers (i.e. variable names) or their properties.
This helps avoid the confusing trap of writing code you think is executing, but isn't:

// Meant to use = ReturnType<typeof msgbox>
let shouldContinue: typeof msgbox("Are you sure you want to continue?");

', ' expected.

Indexed Access Types

We can use an indexed access type to look up a specific property on another type:

type Person = { age: number; name: string; alive: boolean };
type Age = Person["age"];
// N = type Age = number

The indexing type is itself a type, so we can use unions, keyof, or other types entirely:

type I1 = Person["age" | "name"];
// AN = type I1 = string | number

type I2 = Person[keyof Person];
// N = type I2 = string | number | boolean

type AliveOrName = "alive" | "name";
type I3 = Person[AliveOrName];
// AN = type I3 = string | boolean

You'll even see an error if you try to index a property that doesn't exist:

type I1 = Person["alve"];

Property 'alve' does not exist on type 'Person'.

Another example of indexing with an arbitrary type is using number to get the type of an array's
elements. We can combine this with typeof to conveniently capture the element type of an array
literal:

const MyArray = [
{ name: "Alice", age: 15 },
{ name: "Bob", age: 23 },
{ name: "Eve", age: 38 },

1;

type Person = typeof MyArray[number];
// N = type Person = {

// name: string;
// age: number;
// }

type Age = typeof MyArray[number]["age"];
// N = type Age = number

// 0Or
type Age2 = Person["age"];
// N = type Age2 = number

Conditional Types

At the heart of most useful programs, we have to make decisions based on input. JavaScript
programs are no different, but given the fact that values can be easily introspected, those decisions
are also based on the types of the inputs. Conditional types help describe the relation between the
types of inputs and outputs.

interface Animal {
live(): void;

}

interface Dog extends Animal {
woof(): void,

}

type Examplel = Dog extends Animal ? number : string;
// N = type Examplel = number

type Example2 = RegExp extends Animal ? number : string;
// N = type Example2 = string

Conditional types take a form that looks a little like conditional expressions (condition ?
trueExpression : falseExpression) inJavaScript:

SomeType extends OtherType ? TrueType : FalseType;

When the type on the left of the extends is assignable to the one on the right, then you'll get the

type in the first branch (the "true" branch); otherwise you'll get the type in the latter branch (the
"“false" branch).

From the examples above, conditional types might not immediately seem useful - we can tell
ourselves whether or not Dog extends Animal and pick number or string! Butthe power

of conditional types comes from using them with generics.

For example, let's take the following createlLabel function:

interface IdLabel {
id: number /* some fields */;

¥

interface NamelLabel {
name: string /* other fields */;

}

function createlLabel(id: number): IdLabel;

function createlLabel(name: string): NamelLabel;

function createlLabel(nameOrId: string | number): IdLabel | NamelLabel;

function createlLabel(nameOrId: string | number): IdLabel | NameLabel {
throw "unimplemented";

}

These overloads for createLabel describe a single JavaScript function that makes a choice based on
the types of its inputs. Note a few things:

1.If a library has to make the same sort of choice over and over throughout its AP, this
becomes cumbersome.

2. We have to create three overloads: one for each case when we're sure of the type (one for
string and one for number), and one for the most general case (takinga string |
number). For every new type createlLabel can handle, the number of overloads grows
exponentially.

Instead, we can encode that logic in a conditional type:
type NameOrId<T extends number | string> = T extends number

? IdLabel
NamelLabel;

We can then use that conditional type to simplify out overloads down to a single function with no
overloads.

function createlLabel<T extends number | string>(idOrName: T): NameOrId<T>
throw "unimplemented";

¥

let a = createlLabel("typescript");
// N = let a: NamelLabel

let b = createLabel(2.8);
// N = let b: IdLabel

let ¢ = createLabel(Math.random() ? "hello" : 42);
// N = let c: NamelLabel | IdLabel

Conditional Type Constraints

Often, the checks in a conditional type will provide us with some new information. Just like with
narrowing with type guards can give us a more specific type, the true branch of a conditional type
will further constraint generics by the type we check against.

For example, let's take the following:

type MessageOf<T> = T["message"];

Type '"message"' cannot be used to index type 'T'.

In this example, TypeScript errors because T isn't known to have a property called message . We
could constrain T, and TypeScript would no longer complain:

type MessageOf<T extends { message: unknown }> = T["message"];

interface Email {
message: string;

}

interface Dog {
bark(): void;
}

type EmailMessageContents = MessageOf<Email>;
// A = type EmailMessageContents = string

However, what if we wanted MessageOf to take any type, and default to something like never if
a message property isn't available? We can do this by moving the constraint out and introducing
a conditional type:

type MessageOf<T> = T extends { message: unknown } ? T["message"] : never;

interface Email {
message: string;

}

interface Dog {
bark(): void;
}

type EmailMessageContents = MessageOf<Email>;
// N = type EmailMessageContents = string

type DogMessageContents = MessageOf<Dog>;
// N = type DogMessageContents = never

Within the true branch, TypeScript knows that T willhave a message property.

As another example, we could also write a type called Flatten that flattens array types to their
element types, but leaves them alone otherwise:

type Flatten<T> = T extends any[] ? T[number] : T;

// Extracts out the element type.
type Str = Flatten<string[]>;
// N = type Str = string

// Leaves the type alone.
type Num = Flatten<number>;
// A = type Num = number

When Flatten is given an array type, it uses an indexed access with number to fetch out
string[] 's element type. Otherwise, it just returns the type it was given.

Inferring Within Conditional Types

We just found ourselves using conditional types to apply constraints and then extract out types.
This ends up being such a common operation that conditional types make it easier.

Conditional types provide us with a way to infer from types we compare against in the true branch
using the infer keyword. For example, we could have inferred the element type in Flatten

instead of fetching it out "manually" with an indexed access type:

type Flatten<Type> = Type extends Array<infer Item> ? Item : Type;

Here, we used the infer keyword declaratively introduced a new generic type variable named
Item instead of specifying how to retrieve the element type of T within the true branch. This
frees us from having to think about how to dig through and probing apart the structure of the types
we're interested.

We can write some useful helper type aliases using the infer keyword. For example, for simple
cases, we can extract the return type out from function types:

type GetReturnType<Type> = Type extends (...args: never[]) => infer Returr
? Return
never;

type Num = GetReturnType<() => number>;
// A = type Num = number

type Str = GetReturnType<(x: string) => string>;
// A = type Str = string

type Bools = GetReturnType<(a: boolean, b: boolean) => boolean[]>;
// N = type Bools = boolean[]

When inferring from a type with multiple call signatures (such as the type of an overloaded
function), inferences are made from the /ast signature (which, presumably, is the most permissive
catch-all case). It is not possible to perform overload resolution based on a list of argument types.

declare function stringOrNum(x: string): number;
declare function stringOrNum(x: number): string;
declare function stringOrNum(x: string | number): string | number;

type T1l = ReturnType<typeof stringOrNum>;
// AN = type T1 = string | number

Distributive Conditional Types

When conditional types act on a generic type, they become distributive when given a union type.
For example, take the following:

type ToArray<Type> = Type extends any ? Type[] : never;

If we plug a union type into ToArray , then the conditional type will be applied to each member of
that union.

type ToArray<Type> = Type extends any ? Type[] : never;

type StrArrOrNumArr = ToArray<string | number>;
// N = type StrArrOrNumArr = string[] | number[]

What happens here is that StrorNumArray distributes on:

‘ string | number;

and maps over each member type of the union, to what is effectively:

‘ ToArray<string> | ToArray<number>;

which leaves us with;

‘ string[] | number[];

Typically, distributivity is the desired behavior. To avoid that behavior, you can surround each side of
the extends keyword with square brackets.

type ToArrayNonDist<Type> = [Type] extends [any] ? Type[] : never;

// 'StrOrNumArr' is no longer a union.
type StrOrNumArr = ToArrayNonDist<string | number>;
// A = type StrOrNumArr = (string | number)[]

Mapped Types

When you don't want to repeat yourself sometimes a type needs to be based on another type.

Mapped types build on the syntax for index signatures, which are used to declare the types of
properties which has not been declared ahead of time:

type OnlyBoolsAndHorses = {
[key: string]: boolean | Horse;

}

const conforms: OnlyBoolsAndHorses = {
del: true,
rodney: false,

};

A mapped type is a generic type which uses a union created via a keyof to iterate through the keys
of one type to create another:

type OptionsFlags<Type> = {
[Property in keyof Type]: boolean;
Iy

In this example, OptionFlags will take all the properties from the type Type and change their
values to be a boolean.

type FeatureFlags = {
darkMode: () => void;
newUserProfile: () => void;

i

type FeatureOptions = OptionsFlags<FeatureFlags>;
// N = type FeatureOptions = {

// darkMode: boolean;

// newUserProfile: boolean;

// }

https://www.typescriptlang.org/docs/handbook/2/indexed-access-types.html

Mapping Modifiers

There are two additional modifiers which can be applied during mapping: readonly and ?
which affect mutability and optionality respectively.

You can remove or add these modifiers by prefixing with - or +.If you don't add a prefix, then +
is assumed.

// Removes 'readonly' attributes from a type's properties
type CreateMutable<Type> = {

-readonly [Property in keyof Type]: Type[Property];
3

type LockedAccount = {
readonly id: string;
readonly name: string;

}

type UnlockedAccount = CreateMutable<LockedAccount>;
// N = type UnlockedAccount = {

// id: string;
// name: string;
// }

// Removes 'optional' attributes from a type's properties
type Concrete<Type> = {

[Property in keyof Type]-?: Type[Property];
3

type MaybeUser = {
id: string;
name?: string;
age?: number;

i

type User = Concrete<MaybeUser>;
// N = type User = {

// id: string;
// name: string;
// age: number;

/7)

IKey Remapping via as

In TypeScript 4.1 and onwards, you can re-map keys in mapped types with an as clausein a
mapped type:

type MappedTypeWithNewProperties<Type> = {
[Properties in keyof Type as NewKeyType]: Type[Properties]

You can leverage features like template literal types to create new property names from prior ones:

type Getters<Type> = {
[Property in keyof Type as "get${Capitalize<string & Property>}"]1: ()
Iy

interface Person {
name: string;
age: number;
location: string;

type LazyPerson = Getters<Person>;
// N = type LazyPerson = {

// getName: () => string;

// getAge: () => number;

// getLocation: () => string;
// }

You can filter out keys by producing never via a conditional type:

https://www.typescriptlang.org/docs/handbook/2/template-literal-types.html

// Remove the 'kind' property
type RemoveKindField<Type> = {

[Property in keyof Type as Exclude<Property, "kind">]: Type[Property]
Iy

interface Circle {
kind: "circle";
radius: number;

type KindlessCircle = RemoveKindField<Circle>;
// A = type KindlessCircle = {

// radius: number;

// }

Further Exploration

Mapped types work well with other features in this type manipulation section, for example hereis a
mapped type using_a conditional type which returns either a true or false depending on

whether an object has the property pii setto the literal true:

type ExtractPII<Type> = {
[Property in keyof Type]: Type[Property] extends { pii: true } ? true
3

type DBFields = {
id: { format: "incrementing" };
name: { type: string; pii: true };

I

type ObjectsNeedingGDPRDeletion = ExtractPII<DBFields>;
// N = type ObjectsNeedingGDPRDeletion = {

// id: false;

// name: true;

// 3

https://www.typescriptlang.org/docs/handbook/2/conditional-types.html

Template Literal Types

Template literal types build on string literal types, and have the ability to expand into many strings
via unions.

They have the same syntax as template literal strings in JavaScript, but are used in type positions.
When used with concrete literal types, a template literal produces a new string literal type by
concatenating the contents.

type World = "world";

type Greeting = “hello ${world};
// N = type Greeting = "hello world"

When a union is used in the interpolated position, the type is the set of every possible string literal
that could be represented by each union member:

type EmaillLocaleIDs = "welcome_email" | "email heading";
type FooterLocaleIDs = "footer_title" | "footer_sendoff";

type AllLocaleIDs = "${EmaillLocaleIDs | FooterLocaleIDs} id";
// N = type AllLocalelIDs = "welcome_email_id" | "email_heading_id" | "fc

For each interpolated position in the template literal, the unions are cross multiplied:

type AllLocaleIDs = "${EmaillocaleIDs | FooterLocaleIDs}_id";
type Lang — llenll | Iljall | llptll;

type LocaleMessageIDs = “${Lang}_${AllLocaleIDs} ;
// N = type LocaleMessageIDs = "en_welcome_email_id" | "en_email_headinc

We generally recommend that people use ahead-of-time generation for large string unions, but this
is useful in smaller cases.

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#literal-types
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

String Unions in Types

The power in template literals comes when defining a new string based off an existing string inside
a type.

For example, a common pattern in JavaScript is to extend an object based on the fields that it
currently has. We'll provide a type definition for a function which adds support for an on function

which lets you know when a value has changed:

const person = makeWatchedObject({
firstName: "Saoirse",
lastName: "Ronan",
age: 26,

1)

person.on("firstNameChanged", (newvValue) => {
console.log(firstName was changed to ${newValue}!);

1)

Notice that on listens on the event "firstNameChanged" , notjust "firstName" , template
literals provide a way to handle this sort of string manipulation inside the type system:

type PropEventSource<Type> = {
on(eventName: "${string & keyof Type}Changed , callback: (newValue: ar

+s
/// Create a "watched object" with an 'on' method

/// so that you can watch for changes to properties.
declare function makeWatchedObject<Type>(obj: Type): Type & PropEventSourc

With this, we can build something that errors when given the wrong property:

const person = makeWatchedObject({
firstName: "Saoirse",
lastName: "Ronan",
age: 26

1)

person.on("firstNameChanged", () => {});

// It's typo-resistent

person.on("firstName", () => {});
Argument of type '"firstName"' is not assignable to parameter of type
'""firstNameChanged" | "lastNameChanged" | "ageChanged"'.

Argument of type '"frstNameChanged"' is not assignable to parameter of
type '"firstNameChanged" | "lastNameChanged" | "ageChanged"'.

Inference with Template Literals

Note how the last examples did not re-use the type of the original value. The callback used an any .
Template literal types can infer from substitution positions.

We can make our last example generic to infer from parts of the eventName string to figure out
the associated property.

type PropEventSource<Type> = {
on<Key extends string & keyof Type>
(eventName: “${Key}Changed , callback: (newValue: Type[Key]) => vc

}s
declare function makeWatchedObject<Type>(obj: Type): Type & PropEventSourc

const person = makeWatchedObject({
firstName: "Saoirse",
lastName: "Ronan",
age: 26

1)

person.on("firstNameChanged", newName => {
// N = (parameter) newName: string

console.log(new name is ${newName.toUpperCase()});

1)

person.on("ageChanged", newAge => {
// N = (parameter) newAge: number

if (newAge < 0) {

console.warn("warning! negative age");

1)

Here we made on into a generic method.

When a user calls with the string "firstNameChanged' , TypeScript will try to infer the right
type for K. To do that, it will match K against the content prior to "Changed" and infer the
string "firstName" . Once TypeScript figures that out, the on method can fetch the type of
firstName on the original object, which is string in this case. Similarly, when called with
"ageChanged" , TypeScript finds the type for the property age whichis number .

Inference can be combined in different ways, often to deconstruct strings, and reconstruct them in
different ways.

Intrinsic String Manipulation Types

To help with string manipulation, TypeScript includes a set of types which can be used in string
manipulation. These types come built-in to the compiler for performance and can't be found in the

.d. ts files included with TypeScript.

Uppercase<StringType>
Converts each character in the string to the uppercase version.
Example

type Greeting = "Hello, world"

type ShoutyGreeting = Uppercase<Greeting>
// N = type ShoutyGreeting = "HELLO, WORLD"

type ASCIICacheKey<Str extends string> = "ID-${Uppercase<Str>}"
type MainID = ASCIICacheKey<"my_app">
// A = type MainID = "ID-MY_APP"

Lowercase<StringType>

Converts each character in the string to the lowercase equivalent.
Example

type Greeting = "Hello, world"

type QuietGreeting = Lowercase<Greeting>
// N = type QuietGreeting = "hello, world"

type ASCIICacheKey<Str extends string> = “id-${Lowercase<Str>}"
type MainID = ASCIICacheKey<"MY_APP">
// A = type MainID = "id-my_app"

Capitalize<StringType>
Converts the first character in the string to an uppercase equivalent.

Example

type LowercaseGreeting = "hello, world";
type Greeting = Capitalize<LowercaseGreeting>;
// N = type Greeting = "Hello, world"

Uncapitalize<StringType>
Converts the first character in the string to a lowercase equivalent.
Example

type UppercaseGreeting = "HELLO WORLD",

type UncomfortableGreeting = Uncapitalize<UppercaseGreeting>;
// N = type UncomfortableGreeting = "hELLO WORLD"

» Technical details on the intrinsic string manipulation types

Classes

TypeScript offers full support for the class keyword introduced in

ES2015. Background Reading:

Classes (MDN)

As with other JavaScript language features, TypeScript adds type
annotations and other syntax to allow you to express relationships between classes and other types.

Class Members

Here's the most basic class - an empty one:

class Point {}

This class isn't very useful yet, so let's start adding some members.

Fields
A field declaration creates a public writeable property on a class:
class Point {

X: number;
y: number;

}

const pt = new Point();
pt.x = 0,

pt.y = 0;

As with other locations, the type annotation is optional, but will be an implict any if not specified.

Fields can also have initializers; these will run automatically when the class is instantiated:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

class Point {
X = 0;
y = 0;

}

const pt = new Point();
// Prints 0, 0
console.log(${pt.x}, ${pt.y});

Just like with const, let,and var, theinitializer of a class property will be used to infer its

type:

const pt = new Point();
pt.X = "0";

Type 'string' is not assignable to type 'number'.

--strictPropertyInitialization

The strictPropertyInitialization setting controls whether class fields need to be
initialized in the constructor.

class BadGreeter {
name: string;

Property 'name' has no initializer and is not definitely assigned in the
constructor.

}

class GoodGreeter {
name: string;

constructor() {
this.name = "hello";

Note that the field needs to be initialized in the constructor itself. TypeScript does not analyze
methods you invoke from the constructor to detect initializations, because a derived class might
override those methods and fail to initialize the members.

If you intend to definitely initialize a field through means other than the constructor (for example,
maybe an external library is filling in part of your class for you), you can use the definite assignment
assertion operator, ! :

class OKGreeter {
// Not initialized, but no error
name!: string;

readonly

Fields may be prefixed with the readonly modifier. This prevents assignments to the field outside
of the constructor.

class Greeter {
readonly name: string = "world",;

constructor(otherName?: string) {
if (otherName !'== undefined) {
this.name = otherName;

err() {

this.name = "not ok";

| Cannot assign to 'name' because it is a read-only property.

b
}
const g = new Greeter();
g.name = "also not ok";

| Cannot assign to 'name' because it is a read-only property.

Constructors

Class constructors are very similar to functions. You can add Background Reading:
parameters with type annotations, default values, and overloads: Constructor (MDN)

class Point {
X: number;
y: number;

// Normal signature with defaults
constructor(x = 0, y = 0) {
this.x = x;
this.y = vy;

class Point {
// Overloads
constructor(x: number, y: string);
constructor(s: string);
constructor(xs: any, y?: any) {
// TBD

There are just a few differences between class constructor signatures and function signatures:

e Constructors can't have type parameters - these belong on the outer class declaration, which
we'll learn about later

e Constructors can't have return type annotations - the class instance type is always what's
returned

Super Calls

Just as in JavaScript, if you have a base class, you'll need to call super(); inyour constructor
body before using any this. members:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/constructor

class Base {
k = 4,

class Derived extends Base {
constructor() {
// Prints a wrong value in ES5; throws exception in ES6
console.log(this.k);

'super' must be called before accessing 'this' in the constructor of a
derived class.

super();
}
}

Forgetting to call super is an easy mistake to make in JavaScript, but TypeScript will tell you
when it's necessary.

Methods

A function property on a class is called a method. Methods can use all

the same type annotations as functions and constructors: Background Reading:

Method definitions

class Point {
X = 10,
y = 10;

scale(n: number): void {
this.x *= n;
this.y *= n;
¥
}

Other than the standard type annotations, TypeScript doesn't add anything else new to methods.

Note that inside a method body, it is still mandatory to access fields and other methods via this. .
An unqualified name in a method body will always refer to something in the enclosing scope:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Method_definitions

let Xx: number = 0;

class C {
x: string = "hello";

m() {

// This is trying to modify 'x' from line 1, not the class property
X = "world";

Type 'string' is not assignable to type 'number'.

¥
b

Getters / Setters

Classes can also have accessors:

class C {
_length = 0;
get length() {
return this._length;

3
set length(value) {

this._length = value;

}

Note that a field-backed get/set pair with no extra logic is very rarely useful in JavaScript. It's fine to

expose public fields if you don't need to add additional logic during the get/set operations.

TypeScript has some special inference rules for accessors:

e If no set exists, the property is automatically readonly

e The type of the setter parameter is inferred from the return type of the getter

o If the setter parameter has a type annotation, it must match the return type of the getter

e Getters and setters must have the same Member Visibility

It is not possible to have accessors with different types for getting and setting.

If you have a getter without a setter, the field is automatically readonly

Index Signatures

Classes can declare index signatures; these work the same as Index Signatures for other object
types:

class MyClass {
[s: string]: boolean | ((s: string) => boolean);
check(s: string) {
return this[s] as boolean;

¥
¥

Because the index signature type needs to also capture the types of methods, it's not easy to
usefully use these types. Generally it's better to store indexed data in another place instead of on
the class instance itself

Class Heritage

Like other langauges with object-oriented features, classes in JavaScript can inherit from base
classes.

implements Clauses

You can use an implements clause to check that a class satisfies a particular interface .An
error will be issued if a class fails to correctly implement it:

interface Pingable {
ping(): void;

¥
class Sonar implements Pingable {
ping() {
console.log("ping!");
¥

}

class Ball implements Pingable {

Class 'Ball' incorrectly implements interface 'Pingable'.
Property 'ping' is missing in type 'Ball' but required in type
'Pingable’.

pong() {
console.log("pong!");

¥
b

Classes may also implement multiple interfaces, e.g. class C implements A, B {.
Cautions

It's important to understand that an implements clause is only a check that the class can be

treated as the interface type. It doesn't change the type of the class or its methods at all. A common
source of error is to assume thatan implements clause will change the class type - it doesn't!

interface Checkable {
check(name: string): boolean;

¥

class NameChecker implements Checkable {
check(s) {

Parameter 's' implicitly has an 'any' type.

// Notice no error here
return s.toLowercse() === "ok";
// A = any

In this example, we perhaps expected that s 's type would be influenced by the name: string
parameter of check .ltis not- implements clauses don't change how the class body is checked
or its type inferred.

Similarly, implementing an interface with an optional property doesn't create that property:

interface A {
X: number;
y?: number;

3

class C implements A {
X = 0,
}

const ¢ = new C();
c.y = 10;

Property 'y' does not exist on type 'C'.

extends Clauses

Classes may extend from a base class. A derived class has all the

properties and methods of its base class, and also define additional
members.

Background Reading:
extends keyword (MDN)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/extends

class Animal {
move() {
console.log("Moving along!");
b
}

class Dog extends Animal {
woof(times: number) {
for (let 1 = 0; 1 < times; i++) {
console.log("woof!");
¥
b
}

const d = new Dog();

// Base class method
d.move();

// Derived class method
d.woof(3);

Overriding Methods

A derived class can also override a base class field or property. You can

use the super. syntax to access base class methods. Note that Background Reading:

super keyword (MDN)

because JavaScript classes are a simple lookup object, there is no
notion of a "super field".

TypeScript enforces that a derived class is always a subtype of its base class.

For example, here's a legal way to override a method:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/super

class Base {

greet() {
console.log("Hello, world!");
}
}

class Derived extends Base {
greet(name?: string) {
if (name === undefined) {
super.greet();
} else {
console.log(Hello, ${name.toUpperCase()});
}
}
}

const d = new Derived();
d.greet();
d.greet("reader");

It's important that a derived class follow its base class contract. Remember that it's very common
(and always legal!) to refer to a derived class instance through a base class reference:

// Alias the derived instance through a base class reference
const b: Base = d;

// No problem

b.greet();

What if Derived didn't follow Base 's contract?

class Base {

greet() {
console.log("Hello, world!");

¥
b

class Derived extends Base {
// Make this parameter required
greet(name: string) {

Property 'greet' in type 'Derived' is not assignable to the same property
in base type 'Base'.

Type '(name: string) => void' is not assignable to type '() => void'.

console.log(Hello, ${name.toUpperCase()});
¥
}

If we compiled this code despite the error, this sample would then crash:

const b: Base = new Derived();
// Crashes because "name" will be undefined
b.greet();

Initialization Order

The order that JavaScript classes initialize can be surprising in some cases. Let's consider this code:

class Base {
name = "base";
constructor() {
console.log("My name is " + this.name);

}

class Derived extends Base {
name = "derived";

// Prints '"base", not "derived"
const d = new Derived();

What happened here?
The order of class initialization, as defined by JavaScript, is:

e The base class fields are initialized
e The base class constructor runs
e The derived class fields are initialized

e The derived class constructor runs

This means that the base class constructor saw its own value for name during its own constructor,
because the derived class field initializations hadn't run yet.

Inheriting Built-in Types

Note: If you don't plan to inherit from built-in types like Array, Error, Map, etc., you may skip this

section

In ES2015, constructors which return an object implicitly substitute the value of this for any
callers of super(...).ltis necessary for generated constructor code to capture any potential
return value of super(...) andreplaceitwith this.

As aresult, subclassing Error, Array, and others may no longer work as expected. This is due
to the fact that constructor functions for Error, Array, and the like use ECMAScript 6's
new.target to adjust the prototype chain; however, there is no way to ensure a value for

new.target when invoking a constructor in ECMAScript 5. Other downlevel compilers generally
have the same limitation by default.

For a subclass like the following:

class MsgError extends Error {
constructor(m: string) {
super(m);

¥
sayHello() {

return "hello " + this.message;

b
by

you may find that:

e methods may be undefined on objects returned by constructing these subclasses, so calling
sayHello will resultin an error.

e instanceof will be broken between instances of the subclass and their instances, so (new
MsgError()) instanceof MsgError will return false.

As a recommendation, you can manually adjust the prototype immediately after any super(...)
calls.

class MsgError extends Error {
constructor(m: string) {
super(m);

// Set the prototype explicitly.
Object.setPrototypeOf(this, MsgError.prototype);

}

sayHello() {
return "hello " + this.message;

}
b

However, any subclass of MsgError will have to manually set the prototype as well. For runtimes
that don't support Object.setPrototypeOf, you may instead be abletouse __proto .

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/setPrototypeOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto

Unfortunately, these workarounds will not work on Internet Explorer 10 and prior. One can
manually copy methods from the prototype onto the instance itself (i.e. MSgError.prototype

onto this), but the prototype chain itself cannot be fixed.

Member Visibility

You can use TypeScript to control whether certain methods or properties are visible to code outside
the class.

public

The default visibility of class members is public.A public member can be accessed by
anywhere:

class Greeter {
public greet() {
console.log("hi!");

b
¥

const g = new Greeter();
g.greet();

Because public is already the default visibility modifier, you don't ever need to write it on a class
member, but might choose to do so for style/readability reasons.

protected

protected members are only visible to subclasses of the class they're declared in.

https://msdn.microsoft.com/en-us/library/s4esdbwz(v=vs.94).aspx

class Greeter {
public greet() {
console.log("Hello, " + this.getName());
3
protected getName() {
return "hi";

class SpecialGreeter extends Greeter {
public howdy() {
// OK to access protected member here
console.log("Howdy, " + this.getName());

}
¥

const g = new SpecialGreeter();
g.greet(); // OK
9.getName();

Property 'getName' is protected and only accessible within class 'Greeter'
and its subclasses.

Exposure of protected members

Derived classes need to follow their base class contracts, but may choose to expose a more general
type with more capabilities. This includes making protected members public:

class Base {
protected m = 10;
}
class Derived extends Base {
// No modifier, so default is 'public'
m = 15;
}
const d = new Derived();
console.log(d.m); // OK

Note that Derived was already able to freely read and write m, so this doesn't meaningfully alter
the "security" of this situation. The main thing to note here is that in the derived class, we need to be

careful to repeat the protected modifier if this exposure isn't intentional.

Cross-hierarchy protected access

Different OOP languages disagree about whether it's legal to access a protected member
through a base class reference:

class Base {
protected x: number = 1;

3

class Derivedl extends Base {
protected x: number = 5;

¥

class Derived2 extends Base {
fl(other: Derived2) {
other.x = 10;

}
f2(other: Base) {

other.x = 10;

Property 'x' is protected and only accessible through an instance of class
'Derived2’'.

¥
b

Java, for example, considers this to be legal. On the other hand, C# and C++ chose that this code
should be illegal.

TypeScript sides with C# and C++ here, because accessing x in Derived2 should only be legal
from Derived2 's subclasses, and Derived1 isn't one of them. Moreover, if accessing X
through a Derived2 reference is illegal (which it certainly should be!), then accessing it through a
base class reference should never improve the situation.

See also Why Cana€™t | Access A Protected Member From A Derived Class? which explains more of
C#'s reasoning.

private

private islike protected, but doesn't allow access to the member even from subclasses:

https://blogs.msdn.microsoft.com/ericlippert/2005/11/09/why-cant-i-access-a-protected-member-from-a-derived-class/

class Base {
private x = 0;

¥

const b = new Base();
// Can't access from outside the class
console.log(b.x);

Property 'x' is private and only accessible within class 'Base'.

class Derived extends Base {
showX() {
// Can't access in subclasses
console.log(this.x);

Property 'x' is private and only accessible within class 'Base'.

}

Because private members aren't visible to derived classes, a derived class can't increase its
visibility:

class Base {
private x = 0;

¥

class Derived extends Base {

Class 'Derived' incorrectly extends base class 'Base'.
Property 'x' is private in type 'Base' but not in type 'Derived'.

Cross-instance private access

Different OOP languages disagree about whether different instances of the same class may access
each others' private members. While languages like Java, C#, C++, Swift, and PHP allow this,
Ruby does not.

TypeScript does allow cross-instance private access:

class A {
private x = 10;

public sameAs(other: A) {
// No error
return other.x === this.x;

Caveats

Like other aspects of TypeScript's type system, private and protected are only enforced
during type checking. This means that JavaScript runtime constructs like in or simple property
lookup can still access a private or protected member:

class MySafe {
private secretKey = 12345;

}

// In a JavaScript file...
const s = new MySafe();

// Will print 12345
console.log(s.secretKey);

If you need to protect values in your class from malicious actors, you should use mechanisms that
offer hard runtime privacy, such as closures, weak maps, or private fields.

Static Members

Classes may have static members. These members aren't)
Background Reading:

associated with a particular instance of the class. They can be Static Members (MDN)

accessed through the class constructor object itself:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/static
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Private_class_fields

class MyClass {
static x = 0;
static printX() {
console.log(MyClass.x);

}

}
console.log(MyClass.Xx);

MyClass.printX();

Static members can also use the same public, protected, and private visibility modifiers:

class MyClass {
private static x = 0;

3

console.log(MyClass.x);

Property 'x' is private and only accessible within class 'MyClass'.

Static members are also inherited:

class Base {
static getGreeting() {
return "Hello world";

¥
b

class Derived extends Base {
myGreeting = Derived.getGreeting();

}

Special Static Names

It's generally not safe/possible to overwrite properties from the Function prototype. Because
classes are themselves functions that can be invoked with new, certain static names can't be
used. Function properties like name, length,and call aren'tvalid to defineas static
members:

class S {
static name = "S!";

Static property 'name' conflicts with built-in property 'Function.name' of
constructor function 'S'.

}

Why No Static Classes?

TypeScript (and JavaScript) don't have a construct called static class the same way C# and
Java do.

Those constructs only exist because those languages force all data and functions to be inside a
class; because that restriction doesn't exist in TypeScript, there's no need for them. A class with only
a single instance is typically just represented as a normal object in JavaScript/TypeScript.

For example, we don't need a "static class" syntax in TypeScript because a regular object (or even
top-level function) will do the job just as well:

// Unnecessary '"static" class
class MyStaticClass {
static doSomething() {}

}

// Preferred (alternative 1)
function doSomething() {3}

// Preferred (alternative 2)
const MyHelperObject = {
dosomething() {3},

}

Generic Classes

Classes, much like interfaces, can be generic. When a generic class is instantiated with new, its type
parameters are inferred the same way as in a function call:

class Box<Type> {
contents: Type;
constructor(value: Type) {
this.contents = value;

const b = new Box("hello!");
// A const b: Box<string>

Classes can use generic constraints and defaults the same way as interfaces.

Type Parameters in Static Members

This code isn't legal, and it may not be obvious why:

class Box<Type> {
static defaultvalue: Type;

Static members cannot reference class type parameters.

3

Remember that types are always fully erased! At runtime, there's only one Box.defaultValue
property slot. This means that setting Box<string>.defaultValue (if that were possible)
would also change Box<number>.defaultValue - notgood. The static members of a
generic class can never refer to the class's type parameters.

this at Runtime in Classes

It's important to remember that TypeScript doesn't change the runtime
behavior of JavaScript, and that JavaScript is somewhat famous for
having some peculiar runtime behaviors.

Background Reading:
this keyword (MDN)

JavaScript's handling of this is indeed unusual:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

class MyClass {
name = "MyClass";
getName() {
return this.name;
}
}

const ¢ = new MyClass();
const obj = {

name: "obj",

getName: c.getName,

i

// Prints "obj", not "MyClass"
console.log(obj.getName());

Long story short, by default, the value of this inside a function depends on how the function was
called. In this example, because the function was called through the obj reference, its value of
this was obj rather than the class instance.

This is rarely what you want to happen! TypeScript provides some ways to mitigate or prevent this
kind of error.

Arrow Functions

If you have a function that will often be called in a way that loses its

. . . Back Reading:
this context, it can make sense to use an arrow function property ackground Reading

Arrow functions (MDN),

instead of a method definition:

class MyClass {

name = "MyClass";

getName = () => {

return this.name;

Iy
}
const c new MyClass();
const g = c.getName;
// Prints "MyClass" instead of crashing
console.log(g());

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

This has some trade-offs:

e The this value is guaranteed to be correct at runtime, even for code not checked with
TypeScript

e This will use more memory, because each class instance will have its own copy of each function
defined this way

e You can'tuse super.getName in a derived class, because there's no entry in the prototype
chain to fetch the base class method from

this parameters

In a method or function definition, an initial parameter named this has special meaningin
TypeScript. These parameters are erased during compilation:

// TypeScript input with 'this' parameter
function fn(this: SomeType, Xx: number) {
/* o0 K/

// JavaScript output
function fn(x) {
VARV

TypeScript checks that calling a function with a this parameter is done so with a correct context.
Instead of using an arrow function, we can add a this parameter to method definitions to
statically enforce that the method is called correctly:

class MyClass {
name = "MyClass";
getName(this: MyClass) {
return this.name;

¥
}

const ¢ = new MyClass();
// OK
c.getName();

// Error, would crash
const g = c.getName;
console.log(g());

The 'this' context of type 'void' is not assignable to method's 'this' of
type 'MyClass'.

This method takes the opposite trade-offs of the arrow function approach:

e JavaScript callers might still use the class method incorrectly without realizing it
e Only one function per class definition gets allocated, rather than one per class instance

e Base method definitions can still be called via super .

this Types

In classes, a special type called this refers dynamically to the type of the current class. Let's see
how this is useful:

class Box {
contents: string = "";
set(value: string) {
// N = (method) Box.set(value: string): this

this.contents = value;
return this;

Here, TypeScript inferred the return type of set tobe this, rather than Box . Now let's make a
subclass of Box :

class ClearableBox extends Box {

clear() {
this.contents = "";
3
}
const a = new ClearableBox();
const b = a.set("hello");
// N = const b: ClearableBox

You can also use this in a parameter type annotation:

class Box {
content: string = "";
sameAs(other: this) {
return other.content === this.content;

This is different from writing other: Box --if you have a derived class, its sameAs method will
now only accept other instances of that same derived class:

class Box {
content: string = "";
sameAs(other: this) {
return other.content === this.content;

class DerivedBox extends Box {
otherContent: string = "?";

const base = new Box();
const derived = new DerivedBox();
derived.sameAs(base);

Argument of type 'Box' is not assignable to parameter of type
'DerivedBox'.

Property 'otherContent' is missing in type 'Box' but required in type
'DerivedBox'.

Parameter Properties

TypeScript offers special syntax for turning a constructor parameter into a class property with the
same name and value. These are called parameter properties and are created by prefixing a
constructor argument with one of the visibility modifiers public, private, protected, or

readonly . The resulting field gets those modifier(s):

class A {
constructor(
public readonly x: number,
protected y: number,
private z: number

) {

// No body necessary

¥
}
const a = new A(1, 2, 3);
console.log(a.x);
// N = (property) A.Xx: number

console.log(a.z);

| Property 'z' is private and only accessible within class 'A'.

Class Expressions

Class expressions are very similar to class declarations. The only
real difference is that class expressions don't need a name, though
we can refer to them via whatever identifier they ended up bound
to:

Background Reading:

Class expressions (MDN)

const someClass = class<Type> {
content: Type;
constructor(value: Type) {
this.content = value;
¥
¥

const m = new someClass("Hello, world");
// A const m: someClass<string>

abstract Classes and Members

Classes, methods, and fields in TypeScript may be abstract.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/class

An abstract method or abstract field is one that hasn't had an implementation provided. These
members must exist inside an abstract class, which cannot be directly instantiated.

The role of abstract classes is to serve as a base class for subclasses which do implement all the
abstract members. When a class doesn't have any abstract members, it is said to be concrete.

Let's look at an example

abstract class Base {
abstract getName(): string;

printName() {

console.log("Hello, " + this.getName());
}
¥

const b = new Base();

Cannot create an instance of an abstract class.

We can't instantiate Base with new because it's abstract. Instead, we need to make a derived
class and implement the abstract members:

class Derived extends Base {
getName() {
return "world";

const d = new Derived();
d.printName();

Notice that if we forget to implement the base class's abstract members, we'll get an error:

class Derived extends Base {

Non-abstract class 'Derived' does not implement inherited abstract member
'getName' from class 'Base'.

// forgot to do anything
}

Abstract Construct Signatures

Sometimes you want to accept some class constructor function that produces an instance of a class
which derives from some abstract class.

For example, you might want to write this code:

function greet(ctor: typeof Base) {
const instance = new ctor();

Cannot create an instance of an abstract class.

instance.printName();

¥

TypeScript is correctly telling you that you're trying to instantiate an abstract class. After all, given
the definition of greet, it's perfectly legal to write this code, which would end up constructing an
abstract class:

// Bad!
greet(Base);

Instead, you want to write a function that accepts something with a construct signature:

function greet(ctor: new () => Base) {
const instance = new ctor();
instance.printName();

}

greet(Derived);

greet(Base);

Argument of type 'typeof Base' is not assignable to parameter of type 'new
() => Base'.

Cannot assign an abstract constructor type to a non-abstract constructor
type.

Now TypeScript correctly tells you about which class constructor functions can be invoked -
Derived can because it's concrete, but Base cannot.

Relationships Between Classes

In most cases, classes in TypeScript are compared structurally, the same as other types.
For example, these two classes can be used in place of each other because they're identical:
class Pointl {

X = 0,
y =0;

class Point2 {
X = 0,
y = 0;

// OK
const p: Pointl = new Point2();

Similarly, subtype relationships between classes exist even if there's no explicit inheritance:

class Person {
name: string;
age: number;

}

class Employee {
name: string;
age: number;
salary: number;

}

// OK
const p: Person = new Employee();

This sounds straightforward, but there are a few cases that seem stranger than others.

Empty classes have no members. In a structural type system, a type with no members is generally a
supertype of anything else. So if you write an empty class (don't!), anything can be used in place of
it:

class Empty {}

function fn(x: Empty) {
// can't do anything with 'x', so I won't

}

// All OK!
fn(window);

fn({});
fn(fn);

Modules

JavaScript has a long history of different ways to handle modularizing code. TypeScript having been
around since 2012, has implemented support for a lot of these formats, but over time the
community and the JavaScript specification has converged on a format called ES Modules (or ES6
modules). You might know it as the import /export syntax.

ES Modules was added to the JavaScript spec in 2015, and by 2020 had broad support in most web
browsers and JavaScript runtimes.

For focus, the handbook will cover both ES Modules and it's popular pre-cursor CommonJS
module.exports = syntax, and you can find information about the other module patterns in
the reference section under Modules.

How JavaScript Modules are Defined

In TypeScript, just as in ECMAScript 2015, any file containing a top-level import or export is
considered a module.

Conversely, a file without any top-level import or export declarations is treated as a script whose
contents are available in the global scope (and therefore to modules as well).

Modules are executed within their own scope, not in the global scope. This means that variables,
functions, classes, etc. declared in a module are not visible outside the module unless they are
explicitly exported using one of the export forms. Conversely, to consume a variable, function, class,
interface, etc. exported from a different module, it has to be imported using one of the import
forms.

Non-modules

Before we start, it's important to understand what TypeScript considers a module. The JavaScript
specification declares that any JavaScript files without an export or top-level await should be

considered a script and not a module.

Inside a script file variables are declared to be in the shared global scope, and it's assumed that
you'll either use the - -outFile compiler option to join multiple input files into one output file, or
use multiple <script> tags in your HTML to load these files (in the correct order!).

If you have a file that doesn't currently have any import s or export s, but you want to be
treated as a module, add the line:

https://www.typescriptlang.org/docs/handbook/modules.html
https://www.typescriptlang.org/tsconfig#outFile

export {};

to make the file be a module exporting nothing. This syntax works regardless of your module
target.

Modules in TypeScript

There are three main things to consider when writing module-

. . Additional Reading:
based code in TypeScript:

Impatient JS (Modules)

e Syntax: What syntax do | want to use to import and export MDN. JavaScript Modules
things?

e Module Resolution: What is the relationship between module names (or paths) and files on
disk?

e Module Output Target: What should my emitted JavaScript module look like?

ES Module Syntax
A file can declare a main exportvia export default:
// @filename: hello.ts

export default function helloWorld() {
console.log("Hello, world!");

3

This is then imported via:

import hello from "./hello.js";
hello();

In addition to the default export, you can have more than one export of variables and functions via
the export by omitting default :

https://exploringjs.com/impatient-js/ch_modules.html#overview-syntax-of-ecmascript-modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

// @filename: maths.ts
export var pi = 3.14;

export let squareTwo = 1.41;
export const phi = 1.61;

export class RandomNumberGenerator {}
export function absolute(num: number) {

if (num < ©) return num * -1;
return num;

These can be used in another file via the import syntax:

import { pi, phi, absolute } from "./maths.js";

console.log(pi);
const absPhi = absolute(phi);
// A = const absPhi: number

Additional Import Syntax

An import can be renamed using a format like import {old as new}:

import { pi as 1€ } from "./maths.js";

console.log(I€);
// A = (alias) var I€: number
// import I€

You can mix and match the above syntax into a single import:

// @filename: maths.ts
export const pi = 3.14;
export default class RandomNumberGenerator {}

// @filename: app.ts
import RNGen, { pi as I€ } from "./maths.js";

RNGen;
// N = (alias) class RNGen
// import RNGen

console.log(I€);
// A = (alias) const I€: 3.14
// import I€

You can take all of the exported objects and put them into a single namespace using * as name:

// @filename: app.ts
import * as math from "./maths.js";

console.log(math.pi);
const positivePhi = math.absolute(math.phi);
// A = const positivePhi: number

You can import a file and notinclude any variables into your current module via import
"./file"

// @filename: app.ts
import "./maths.js";

console.log("3.14");

In this case, the import does nothing. However, all of the code in maths.ts was evaluated,
which could trigger side-effects which affect other objects.

TypeScript Specific ES Module Syntax

Types can be exported and import using the same syntax as JavaScript values:

// @filename: animal.ts
export type Cat = { breed: string; yearOfBirth: number };

export interface Dog {
breeds: string[];
yearOfBirth: number;

}

// @filename: app.ts
import { Cat, Dog } from "./animal.js";
type Animals = Cat | Dog;

TypeScript has extended the import syntax with import type which is an import which can
only import types.

// @filename: animal.ts
export type Cat = { breed: string; yearOfBirth: number };

'createCatName' cannot be used as a value because it was imported using
"import type'.

export type Dog = { breeds: string[]; yearOfBirth: number };
export const createCatName = () => "fluffy";

// @filename: valid.ts
import type { Cat, Dog } from "./animal.js";
type Animals = Cat | Dog;

// @filename: app.ts

import type { createCatName } from "./animal.js";
const name = createCatName();

This syntax allows a non-TypeScript transpiler like Babel, swc or esbuild to know what imports can
be safely removed.

ES Module Syntax with CommonlJS Behavior

TypeScript has ES Module syntax which directly correlates to a CommonJS and AMD require.
Imports using ES Module are for most cases the same as the require from those environments,

but this syntax ensures you have a 1 to 1 match in your TypeScript file with the CommonlJS output:

import fs = require("fs");
const code = fs.readFileSync("hello.ts", "utf8");

You can learn more about this syntax in the modules reference page

CommonlJS Syntax

CommonJS is the format which most modules on npm are delivered in. Even if you are writing
using the ES Modules syntax above, having an brief understanding of how CommonJS syntax
works will help you debug easier.

Exporting
|dentifiers are exported via setting the exports property on a global called module .
function absolute(num: number) {

if (num < ©) return num * -1;
return num;

}

module.exports = {
pi: 3.14,
squareTwo: 1.41,
phi: 1.61,
absolute,

+

Then these files can be imported viaa require statement:

const maths = require("maths");
maths.pi;
// A = any

Or you can simplify a bit using the destructuring feature in JavaScript:

https://www.typescriptlang.org/docs/handbook/modules.html#export--and-import--require

const { squareTwo } = require("maths");
squareTwo;
// N = const squareTwo: any

CommonlJS and ES Modules interop

There is a mis-match in features between CommonJS and ES Module because ES Modules only
support having the default export as a object, and never as a function. TypeScript has a compiler
flag to reduce the friction between the two different sets of constraints with esModuleInterop.

TypeScript's Module Resolution Options

Module resolution is the process of taking a string from the import or require statement, and
determining what file that string refers to.

TypeScript includes two resolution strategies: Classic and Node. Classic, the default when the

compiler flag module is not commonjs, is included for backwards compatibility. The Node

strategy replicates how Node.js works in CommonJS mode, with additional checks for .ts and
.d.ts.

There are many TSConfig flags which influence the module strategy within TypeScript:
moduleResolution, baseUrl, paths, rootDirs.

For the full details on how these strategies work, you can consult the Module Resolution.

TypeScript's Module Output Options

There are two options which affect the emitted JavaScript output:

e target which determines which JS features are downleveled (converted to run in older
JavaScript runtimes) and which are left intact.

e ‘module which determines what code is used for modules to interact with each other

Which target you use is determined by the features available in the JavaScript runtime you
expect to run the TypeScript code in. That could be: the oldest web browser you support, the lowest
version of Node,js you expect to run on or could come from unique constraints from your runtime -
like Electron for example.

https://www.typescriptlang.org/tsconfig/#esModuleInterop
https://www.typescriptlang.org/tsconfig/#module
https://www.typescriptlang.org/tsconfig/#moduleResolution
https://www.typescriptlang.org/tsconfig/#baseUrl
https://www.typescriptlang.org/tsconfig/#paths
https://www.typescriptlang.org/tsconfig/#rootDirs
https://www.typescriptlang.org/docs/handbook/module-resolution.html
https://www.typescriptlang.org/tsconfig/#target
https://www.typescriptlang.org/tsconfig/#module

All communication between modules happens via a module loader, the compiler flag module

determines which one is used. At runtime the module loader is responsible for locating and
executing all dependencies of a module before executing it.

For example, here is a TypeScript file using ES Modules syntax, showcasing a few different options
for module:

import { valueOfPi } from "./constants.js";

export const twoPi valueOfPi * 2;

ES2020

import { valueOfPi
export const twoPi

[

from "./constants.js";
valueOfPi * 2;

CommonJS

"use strict";

Object.defineProperty(exports, "__esModule", { value: true });
exports.twoPi = void 0;

const constants_js_1 = require("./constants.js");
exports.twoPi = constants_js_1.valueOfPi * 2;

UMD

https://www.typescriptlang.org/tsconfig#module
https://www.typescriptlang.org/tsconfig#module

(function (factory) {
if (typeof module === "object" && typeof module.exports === "object")
var v = factory(require, exports);
if (v !== undefined) module.exports = v;
}
else if (typeof define === "function" && define.amd) {
define(["require", "exports", "./constants.js"], factory);
}
}) (function (require, exports) {
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.twoPi = void 0;
const constants_js_1 = require("./constants.js");
exports.twoPi = constants_js_1.valueOfPi * 2;

)

Note that ES2020 is effectively the same as the original index.ts.

You can see all of the available options and what their emitted JavaScript code looks like in the
TSConfig Reference for module.

TypeScript namespaces

TypeScript has it's own module format called namespaces which pre-dates the ES Modules
standard. This syntax has a lot of useful features for creating complex definition files, and still sees
active use in DefinitelyTyped. While not deprecated, the majority of the features in namespaces exist
in ES Modules and we recommend you use that to align with JavaScript's direction. You can learn
more about namespaces in the namespaces reference page.

https://www.typescriptlang.org/tsconfig/#module
https://www.typescriptlang.org/dt
https://www.typescriptlang.org/docs/handbook/namespaces.html

